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A wireless biomedical monitoring system begins with a wireless sensor node, the front-
end device for acquiring data from various sensors. Data is sent to the cloud before 
being displayed to users via the dashboard. The front-end device presents significant 
challenges, particularly for clinical applications. In addition to collecting accurate bio-
signal data, it must meet certain critical requirements such as portability, real-time 
monitoring, and power efficiency. The data transmission process consumes significant 
energy in the sensor node. As a result, reducing the number of data transmissions 
becomes critical to reduce power consumption. This paper focuses on the sensor node 
design tailored explicitly for biomedical applications and introduces an ECG data 
compression implementation. This study examines both the sensor node's 
performance and the compression algorithm. On the sensor node, a lossy compression 
technique known as K-RLE is used to reduce the number of transmissions. The 
reconstructed ECG data shows that the sensor node effectively preserves all significant 
ECG signal events up to K = 15. 
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1. Introduction 
 

Internet of Things (IoT) applications rely heavily on wireless sensor nodes. These devices collect 
measured samples from sensors and transmit the data to gateways or local monitoring devices. The 
sampled data can then be stored on a cloud server, making them useful for additional analysis, such 
as behaviour prediction and trend analysis. 

This technology has a wide-ranging impact, including the biomedical field [1, 2, 3]. It has 
significantly improved the sharing of information between medical professionals and patients. With 
the advent of remote health monitoring, patients’ well-being can be assessed from a distance [4, 5, 
6]. In addition, this technology has significantly enhanced safety monitoring and fostered 
independence in communities, especially among older people [7, 8]. 
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Despite their numerous benefits, one of the most significant challenges in designing sensor nodes 
is their limited battery operation lifetime, primarily caused by the high energy consumption during 
data transmission. For sensor nodes intended for long-term monitoring operations, this drawback is 
amplified. As a sensor node device's energy consumption increases, the battery must be replaced 
more frequently, affecting the patient's comfort. 

Compressing the acquired data before transmission to reduce its size is one potential solution to 
the problem of power consumption during data transmission. The data can be decompressed upon 
reception to recover the original information. However, this introduces additional overhead to the 
wireless sensor node device to perform data compression. The most important factor is whether the 
energy savings realised during data transmission outweigh the energy consumed during compression 
[9].  

This paper focuses on the K-RLE lossy data compression algorithm, which aims to compress data 
efficiently and achieve energy savings. The algorithm's performance in compressing ECG data is 
specifically evaluated. 

Lossy data compression techniques can be distinguished from lossless techniques. During data 
reconstruction, the lossy compression method eliminates certain information, whereas the lossless 
compression method fully restores the compressed data to its original state. 

Figure 1 depicts the ECG signal, which includes essential event characteristics such as the P wave, 
QRS complex, and T wave. However, redundant ECG data exists between heartbeats. By compressing 
these redundancies, the compression algorithm aims to reduce the transmission load on the sensor 
node [10, 11, 12]. 

The five ECG data compression algorithms presented in Table 1 were selected based on their 
application to ECG sensors and hardware implementation. Various design characteristics, such as 
sensor type, microcontroller, transmitter, and battery capacity, are considered while evaluating the 
performance of each algorithm. The essential performance metrics are the compression ratio (CR), 
percentage root mean squared differences (PRD), node lifetime, and transmission sampling rate. 

As evident from Table 1 , authors frequently employ lossy, lossless, or hybrid techniques. 
Small-memory devices and low-performance microcontrollers frequently employ lossy compression 
techniques [13, 14]. As seen in [15] and [16], hybrid and lossless data compression techniques 
typically require larger memory and higher-performance microcontrollers. 

Bluetooth is the most popular communication technology, while Wi-Fi is also an option for 
data transmission. After implementing compression algorithms, the authors report a 22% to 40% 
improvement in battery life. Lossy algorithms achieve greater compression ratios than their lossless 
counterparts, thus, enhancing battery life. 

Compression ratio (CR) and percentage root mean squared differences (PRD) are standard 
metrics for evaluating the compression performance of an electrocardiogram (ECG). However, 
additional techniques are employed to evaluate the quality of reconstructed ECG data following lossy 
compression. Cross-correlation, uncertainty measurement, SNR versus CR graphs, and visual quality 
analysis are employed in studies [1, 16, 17]. Although lossy compression causes distortion in 
reconstructed data, it is generally acceptable if essential ECG features are preserved, such as R peak 
events and other wave features. This preservation can be ensured by evaluating the reconstructed 
data with the ECG detection algorithms of choice [18, 19, 20]. 

The structure of the paper is as follows: Section 2 explores existing ECG data compression 
algorithms. Section III describes the proposed K-RLE algorithm's design method for sensor node 
integration. Section IV discusses the experimental results. Finally, Section V summarizes the paper 
with some concluding remarks. 
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Figure 1: ECG signal with each interval labelled. Source: "e-Health Sensor Platform" 

 

Table 1: ECG compression algorithm implementation in hardware trending from 2016 to 2020 

 

Paper [12] [1] [21] [13] [10] 

Algorithm 

(Name/Type) 

CS/Lossless Enhanced 
DCT/lossy 

Huffman/lossless CS + 
BD/Hybrid 

Noise filter,GBM 
&WTIT/lossy 

Sensor ECG ECG ECG ECG ECG 

CR 2 5.1 2.53 5.4 9.4 

PRD (%) none 4.93 none none 2.27 

Microcontroller TI C2530 SOC Arduino Nano Cortex M4 Arduino UNO 

Transmitter Bluetooth Bluetooth none BLE Wi-Fi 

Battery (mAh) 600 230 none none none 

Percentage change of 
battery life (%) 

[(V2-V1)/V1]*100 

22%                              
(55 to 67H) 

40% 

(100 to 
140H) 

none 40% none 

Sampling rate (Hz) 200 55Hz none 500 none 
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2. Methodology  

The K-RLE algorithm utilised in this study is a lossy and simple data compression technique. 
The K-RLE system operates as follows: The first data point is initially selected as the reference data. 
Each successive data point is then subtracted from the reference data. If the result of the subtraction 
falls within a predetermined threshold value, K, the reference data is copied to the next data point. 
This procedure is repeated until the difference between the reference and nth data points surpasses 
the threshold K. The nth value becomes the new reference data and the procedure is repeated until 
the end of the data stream. 

Figure 2 depicts an illustration of the K-RLE compression algorithm. The first five ECG data 
samples are depicted in Figure 2(a): 213, 214, 207, and 300. Figure 2(b) depicts the intermediate data 
generated during K-RLE compression. Figure 2(c) depicts the results of applying K-RLE with a 
threshold value of 10 to the compressed data.  

To further illustrate the process, let's use the reference value 213 from the first row as an 
example. Each data point in the second through fifth rows is then subtracted from the reference 
value. Figure 2(a) shows the subtraction results in green font. The results of this subtraction are then 
compared with the threshold value K. For data points 214, 207, and 217, the differences are less than 
or equal to 10, satisfying the criterion. As shown in Figure 2(b), the reference value (213) is therefore 
copied to the respective ECG data points. 

However, the difference between data point 300 and the reference value is 87, which exceeds 
the threshold value K. As shown in Figure 2(b), this data point becomes the new reference value, and 
the value 300 is copied to the intermediate data. 

Once the calculation of data differences is complete, the algorithm regroups the samples as 
depicted in Figure 2 (c). Since there are four repetitions of the value 213 in this figure, these data 
points are represented as "4213," and the value 300 is displayed separately. 

 

 

 
 

Figure 2: K-RLE data compression method: (a) raw data (b) intermediate data (c) compressed data 

 
3. Results  

Using Equations 2 and 3, respectively, the Compression Ratio (CR) and Percentage Root Mean 

Squared Differences (PRD) are calculated in this study. There are two sets of data samples, each 

employing a distinct K-variable ranging from K=5 to K=60. 
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CR = 
𝐼𝑛𝑝𝑢𝑡 (𝑟𝑎𝑤)𝑑𝑎𝑡𝑎 𝑓𝑖𝑙𝑒 𝑠𝑖𝑧𝑒

𝑂𝑢𝑡𝑝𝑢𝑡 (𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑)𝑓𝑖𝑙𝑒 𝑑𝑎𝑡𝑎 𝑠𝑖𝑧𝑒
 (2) 

PRD = 100 × √
∑ (𝑥[𝑛]−𝑥̃[𝑛])2𝑁

𝑛=1

∑ (𝑥[𝑛])2𝑁
𝑛=1

 (3) 

 

The average Compression Ratio (CR) and Percentage Root Mean Squared Differences (PRD) 

are displayed in Figure 3 as a function of the K-variable. Both CR and PRD are observed to increase 

with increasing K-values. This indicates that increasing the K-variable improves the performance of 

data compression but at the expense of an increase in data loss. At K = 5, for instance, the CR and 

PRD are 1.29 and 0.30, resulting in a compression ratio of 22.25%. At K = 60, however, the CR and 

PRD reach 4.32 and 6.39, respectively, with a maximum compression percentage of 76%. (see Table 

2). Notably, when K equals 35, both compression performances are marginally superior to the 

preceding K-variable values, but they increase as K approaches 60. This increase is a result of greater 

differences between ECG plots, which distorts key ECG events such as the P-wave and T-wave. 

The optimal compression rate is achieved at K = 10, where the CR and PRD are, respectively, 

1.62 and 0.81. (see Table 2). Comparing the results of this study with those of five other studies as 

shown in Table 3, it has the lowest CR and PRD values and achieves the greatest improvement in 

battery life. These results indicate that the K-RLE algorithm can significantly improve battery life while 

maintaining low compression and distortion rates. 

The Receiver Operating Characteristics (ROC) graph's area under the curve (AUC) is used to 

investigate the relationship between ECG wave detection and distortion of reconstructed ECG data. 

The rate of distortion (PRD) increases as K values rise. Two ECG samples yield an average AUC value, 

which is plotted in Figure 4. 

Using the Multilevel Teager Energy Operator (MTEO) algorithm, Figure 4 summarises the 

average AUC for ECG wave detection performance against the K-value. A higher average AUC value, 

closer to 1, indicates highly accurate detection of ECG waves, whereas a value closer to 0 indicates 

less accuracy. The vertical axis represents the average AUC for each ECG wave, while the horizontal 

axis represents K-values ranging from K = 0 to K = 60. The colour of the line plot distinguishes each 

ECG wave. When K = 0, the graph represents the result of the original ECG wave. 

The results indicate that the R wave has the highest detection performance on the original 

ECG sample, with an average AUC of 0.96, followed by the Q, S, T, and P waves. The detection 

performance of R and S waves remains constant as the K-value increases. However, the performance 

of Q wave detection degrades after K = 15, whereas T wave detection fluctuates when K reaches 15. 

At K = 20, P wave detection begins to decrease. As K increases, the Q wave deteriorates the most, 

followed by the T and P waves. 

In conclusion, the compression algorithm has a negligible effect on certain ECG signal 

characteristics, such as the R and S waves, as their detection performance remains relatively 

constant. As K increases during the compression algorithm, the Q wave is significantly impacted, 

followed by the T and P waves.  
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Figure 3: Graph of compression performance against K-variables 

 

Table 2: Average CR, PRD and compression percentage based on the K-variables value 

 

Performance / 

Value K 
CR PRD 

% 

Compression 

5 1.29 0.30 22.25 

10 1.62 0.81 37.25 

15 1.99 1.37 48.5 

20 2.44 2.06 57.75 

25 2.69 2.69 61.5 

30 2.93 3.06 64.5 

35 3.48 3.79 70.75 

40 3.67 4.10 72 

45 3.89 4.50 73.25 

50 4.03 5.12 74 

55 4.11 5.62 74.75 

60 4.32 6.39 76 
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Table 3: Results comparison between literatures and this research 

Paper [12] [1] [16] [13] [10] 
This Work 

CR 2 5.1 2.53 5.4 9.4 1.62 

PRD None 4.93 None None None 0.81 

Percentage 

changes of 

battery lifetime 

22% 40% None 40% None 42.37% 

 

 

 

Figure 4: Graph of percentage battery level against time for LiPo battery discharging  

 
4. Conclusions 
 

The analysis in Section IV shows that when the sensor node reduces the number of transmission 
processes at K = 10, the sensor node achieves a significant 42.37 % reduction in energy consumption. 
In addition, this design produced a Compression Ratio (CR) of up to 4.32 and a Percentage Root Mean 
Squared Differences (PRD) of 6.39 %, indicating that 76% of the data can be compressed. To 
determine the optimal balance between CR and PRD while maintaining acceptable deformation of 
ECG main features, it has been determined that K = 15 yields optimal results. None of the waves have 
been completely deformed at this value of K, and the R and S waves remain unaltered until K = 60. 
This suggests that K = 15 strikes a suitable balance between data compression and preserving vital 
ECG wave characteristics. 
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