
International Journal of Nanoelectronics and Materials
Volume 11, No. 4, Oct 2018 [517-528]

Design of a Huffman Data Encoder Architecture

Nor Alina Khairi1*, Asral Bahari Jambek1, Nor Asilah Khairi1

1School of Microelectronic Engineering, Universiti Malaysia Perlis, Pauh Putra Campus, 02600 Arau, Perlis,

Malaysia.

Received 29 Jan 2018; Revised 22 Feb 2018; Accepted 21 Mei 2018

ABSTRACT

Wireless sensor networks (WSNs) are important in today’s technology for helping to
monitor our environment. WSNs are widely used in military, medical and industrial
environments. It is capable of monitoring, collecting and transmitting data to a primary
server wirelessly. Wireless sensor nodes are powered by a limited energy supply such as a
small battery or an energy harvester that generally produces a small amount of energy. To
extend the lifetime of the device, energy consumption must be reduced. Data transmission
is known to consume the largest percentage of energy in a sensor node. One method for
reducing energy is by compressing the data prior to transmitting it. This study analyses the
performance of the Huffman architecture in terms of compressing data that are commonly
used in wireless sensor nodes. The primary module in the architecture comprises a data
retriever, frequency calculator, probability calculator, Huffman tree generator and
Huffman code generator. From the experimental results, the Huffman circuit architecture
simulation consumed 51394 clock cycles to completely compress 366 data samples, using
3.729mW of power consumption. Based on a 20MHz clock frequency, this is equivalent to
9.5824µJ of energy consumption. Based on our analyses, the Huffman tree generator
consumed the most power at 1.184mW, equivalent to 31.75% of overall power
consumption.

Keywords: Wireless Sensor Node; Huffman architecture; reduce energy; power
consumption.

1. INTRODUCTION

The use of wireless communication devices have been increasing due to its low maintenance
and portable features [1]. This has resulted in the rapid development of wireless sensor nodes.
The function of this device is to monitor and collect data that will later be transmitted wirelessly
to a main server or station [2]. Such a system can be implemented in many different
environments due to its wireless characteristics, e.g., in the contexts of agriculture and food
industry [3].

Due to the small size of these nodes, energy and storage capacities are limited. Thus, energy
consumption is one of the problems that occur when using wireless sensor node devices [1].
Researchers need to find approaches for reducing power consumption in order to increase the
device’s lifetime and without frequently replacing their batteries.

It has been established that transmission modules consume the most energy within sensor
nodes [1]. This is due to the significant energy needed for powering up the wireless transmitter

* Corresponding Author: noralina89@gmail.com
Published link: http://ijneam.unimap.edu.my/images/PDF/IJNEAM%20OCT%20PDF/Vol_11_No_4_2018_12_517-528.pdf

Nor Alina Khairi, et al. / Design of a Huffman Data Encoder…

518

or receiver in order to transmit or receive data. One approach for reducing energy usage is to
compress data prior to transmitting it. The amount of data required to be transmitted is in this
way reduced, which will reduce the energy used in the transmission process. The higher the
compression ratio of the data, the more energy can be saved.

This study is written as follows. Section 2 discussed on work done related to a number of data
compression algorithm and Huffman algorithm architectures in the present literature. The
method used in this study is described in section 3. In section 4, it presents the results and
discussions upon the conducted research, which will be presented in detail. Section 5 concludes
this work.

2. LITERATURE REVIEW

A survey was conducted on various data compression algorithms that compress different types
of data formats and included the Huffman and Lempel-Ziv-Welch (LZW) algorithms [4]. This
survey was conducted in order to suggest an efficient algorithm with respect to its
corresponding data types. The data used in this work included .DOC, .TXT, .BMP, .TIF, .GIF and.
JPG files. For text file data, the results for both algorithms were nearly the same. The results for
the LZW algorithm were better than for the Huffman algorithm in the case of .BMP image file
compression. For .GIF and .JPG data types, the results after compression were larger than the
original file size.

Experiments including various types of data compression for compressing text data were
conducted [5]. The purpose of these experiments was to conclude the algorithm best suited to
text data. In this experiment, run length encoding (RLE), static Huffman, adaptive Huffman,
Shannon Fano, arithmetic and LZW data compression algorithms were used to compress text
data. The LZW algorithm achieved the highest saving percentages among all algorithms. Both
types of Huffman algorithms and the Shannon Fano algorithm yielded an average saving
percentage, whereas the RLE algorithm had the lowest saving percentage. Although LZW
obtained the highest saving percentage, a problem occurred; as the file's size increased, the
dictionary size also increased; this as due to an increase in entries for the input data.

A study was conducted on various types of data compression using text data as an input [6]. The
study primarily focused on the bit per character (bpc) of each type of data compression. The
study was divided into two categories: statistical compression technique and dictionary based
compression technique. For statistical compression technique, a RLE algorithm achieved an
average of 7.93bpc, rendering it inefficient for compressing the data, as the bits for a character
was the longest among all algorithms. The Shanon Fano algorithm achieved 5.50bpc, which was
the second longest. Huffman and adaptive Huffman coding achieved 5.27bpc and 5.21bpc,
respectively, which was considered to be moderate. The lowest bpc achieved was for arithmetic
coding, which was 5.51bpc. For the Dictionary-based compression technique, Lempel-Ziv-77
(LZ-77) achieved 3.88bpc, which was the highest among the other three algorithms. Lemperl-
Ziv-Storer-Szymanski (LZSS), Lempel-Ziv-Huffman (LZH) and Lempel-Ziv-Bell (LZB) each
achieved 3.32bpc, 3.22bpc and 3.11bpc, respectively. Lempel-Ziv-78 (LZ-78) achieved 4.26bpc,
while the highest bpc was achieved by LZW at 4.90bpc. Lempel-Ziv-Fiala-Green (LZFG) achieved
the lowest bpc at 2.89bpc.

A study of hardware architectures on two stage lossless data compression and a decompression
algorithm was conducted [7]. The purpose of the study was to increase the performance of the
algorithm and to reduce the size of the designed architecture. The chosen algorithms used in the
work were a combination of the Parallel Dictionary Lempel-Ziv-Welch (PDLZW) algorithm and
an approximated adaptive Huffman dynamic-block (AHDB) algorithm. This study is an update to
the previous study conducted by Lin, Lee & Jan (2006) [8], using a content-addressable memory

International Journal of Nanoelectronics and Materials
Volume 11, No. 4, Oct 2018 [517-528]

519

(CAM) dictionary in PDLZW changed to CAM-tag-based and CAM-based ordered list in AHDB
changed to memory-inter-reference (MIR) that uses two static random access memory (SRAM).
Improvements were made to reduce hardware cost and to increase the performance of the
algorithm.

A simple and area-efficient very large-scale integration (VLSI) architecture was proposed for
Huffman coding [9]. The memory storage supports real-time encoding and decoding. A few
simple arithmetic operations were also performed on the chip for encoding and decoding
processes. In the work, a simple scheme that maps the Huffman tree onto memory was
proposed; 2n × (log1 n + 1) bits of memory for log n-bit symbols where required for the scheme
where n denoted the number of leaves in the Huffman tree and where n is a power of 2. An
average of O (log n) time units was required to encode or decode a symbol.

3. METHODOLOGY

This section describes the methods and data used in this work. The Huffman algorithm is firstly
presented, followed by discussions of the block diagrams of the Huffman architecture.

A Huffman algorithm is a technique where the symbols or characters in a sample are converted
into binary code. The high occurrence of symbols or characters is converted into shorter binary
codes, whereas the less frequent occurrences are converted into longer binary code. Figure 1
shows the flow chart of the Huffman encoder. Before Huffman code can be generated, all
symbols in the sample were initially read. Then, the probabilities for each symbol were
calculated using the following equation,

Probability of a symbol (i) = Frequency of symbol (i) ÷ Total symbols in a sample (1)

where i is the symbol in a data sample. Next, the number of calculated probabilities was
checked. If it only contained one probability, the next step followed; where there was more than
one probability, these were sorted from high value to low value probabilities. Two lowest
probabilities were then added to create a new probability. The process was repeated until there
was only one probability left. In the next part, binary code was assigned between the connectors
of the two probabilities. A higher value probability is assigned as high (1) and a lower
probability value as low (0). This began from the highest, most likely probability, which was 1.0.
From here, both probabilities were checked in terms of whether they included more
probabilities. If there were probabilities under its branch, the next lower probabilities were
readied for the following assigned binary bit. The process was repeated until there were no
probabilities left. The results formed a Huffman tree or binary tree that contained branches and
leaves. The leaves represented the probabilities for symbols, while the branches signalled the
connection between the leaves. The next process was to read the binary bits in order to create
Huffman code. The bits were read from the connectors that linked from the highest, most likely
probability to the branch towards the end of the connectors, which were the leaves.

Nor Alina Khairi, et al. / Design of a Huffman Data Encoder…

520

Figure 2 shows an example of how a Huffman tree is created. There are three symbols, i.e., A, B
and C, each with their respective probabilities, which are 0.6, 0.1 and 0.3, sorted from low
probability to high probability. The two lowest probabilities are added together to create a new
probability, i.e., D. Then, the new probability is sorted with another probability, i.e., A, from low
probability to high probability. From there, both probabilities are added to a sum of 1. The
dotted boxes are the leaves of the Huffman tree, while the line arrows are the branches of the
Huffman tree that connects between leaves.

NO

START

END

Insert a sample that contain
symbols

Calculate probabilities of each symbol •Sort probabilities
from highest to
lowest
•The two lowest
probabilities are
added to create a
new probability
•The new
probability
replaces the two
lowest probabilities

Read binary bits between the
connectors that connect from the

highest probability towards the end of
connectors

Ready to assign in
the lower

probabilities

•Higher probability assign as '0' bit
•Lower probability assign as '1' bit

Start assigning binary bits from the
highest and most likely probability

Contain only one
probability?

Contain more
probabilities?

YES

YES

NO

 Figure 1. Flow chart for the Huffman encoder.

International Journal of Nanoelectronics and Materials
Volume 11, No. 4, Oct 2018 [517-528]

521

Figure 3. Flow chart for the Huffman decoder.

A

(0.6)

B

(0.1)

C

(0.3)

High probability

E

(1.0)

D

(0.4)

Low probability

Figure 2. Example of a Huffman tree.

Read first binary bit

START

END

Insert a sample that contains
Huffman code

Add another
bit

•Output symbol from Huffman code
•Delete binary bit(s) in the sequence that match the
Huffman code

code? Found binary bit in
Huffman

Bit(s) empty?

NO

YES

YES

NO

Nor Alina Khairi, et al. / Design of a Huffman Data Encoder…

522

Figure 3 illustrates the flow chart of the Huffman decoder. Firstly, the sequence of binary bits
that contain Huffman code was read. Then, the first bit was read. Next, a bit by bit comparison
was made using the existing Huffman code. If there was a match, the symbol of the matched
code was outputted. If no match was found for the corresponding Huffman code, the next bit
was added until the Huffman code was found. When the corresponding bit and code were
matched, the binary bits in the sequence were deleted. The process was repeated until all binary
bits in the sequence were deleted.

Based on the analysis using Matlab algorithms, five main computational modules were required
for the Huffman module. They were a data retriever (DR), frequency calculator (FC), probability
calculator (PC), Huffman tree generator (HTG) and Huffman code generator (HCG). These
computational modules were important for Huffman operation. Figure 4 shows a block diagram
for the top level of the architecture. The DR module retrieved samples from an input port. The
width of the port was 32 bits. The module saved the sample data to memory. Next, the FC
module calculated the frequency of the symbols or characters in the sample. The symbols were
calculated using the summation and division logic of an arithmetic logic unit (ALU) module
inside the main FC module. The calculated values were saved to memory. The PC module's
function was to calculate the probability of the symbols of the sample. The probability
calculation was performed using the saved frequency values in the memory and the ALU
module. The calculated probabilities were saved to memory. After the probabilities were
calculated, the next module, which was HTG module, sorted the probabilities as described in the
previous section. The sorting of probabilities used a number of registers and memories in order
to save its binary codes and its locations within the generated Huffman tree. Finally, the last
module, the HCG, generated the Huffman code that had been saved in the previously mentioned
memories. A number of registers were used to arrange the binary codes. The arranged binary
code, which was the Huffman code, was later saved to memory. The detail operation of these
modules will be described in the following paragraph.

Figure 4. Top level of the Huffman encoder.

Figure 5 shows the block diagram for the data retriever module. The function of the module is to
save input data into a memory. The module consists of 32-bit 4kbyte data insert memory (DIM),
an identifier and an address counter. The data will be inserted using an input port that is 32-bit
wide. An identifier will identify the input data, where an incoming input datum will increase the
address counter; no incoming data will keep the address counter in a holding state. The address
counter is used to set the address of the memory for the datum to be written in its individual
address. The output port will transfer the saved data into the next module, which is the FC
module.

Output

DR FC

HTG

PC

HCG

Input

International Journal of Nanoelectronics and Materials
Volume 11, No. 4, Oct 2018 [517-528]

523

Figure 5: Block diagram for data retriever.

The block diagram for the frequency calculator module is shown in Figure 6. The function of the
module is to calculate the frequency of the saved input data. The module contains 32-bit 2kbyte
arranged data memory (ADM), 16-bit 2kbyte frequency arranged data memory (FADM), an
identifier, an address counter, data counter and a data comparator. A series of saved data are
inserted through the input. The first datum from the series is saved into the data comparator.
The purpose of the data comparator is to compare the saved datum with the series of saved
data. When there is a match, the identifier will be triggered. The identifier has two functions: to
increase the data counter and to increase the address counter when the entire series of data has
been read. To save the next datum’s frequency, the address counter is increased. Thus, for each
datum, the respective frequency will be saved to the same address as in ADM.

Figure 6. Block diagram for the frequency calculator.

The next module in the Huffman algorithm was probability calculator, as shown in Figure 7,
which calculated the probabilities of the frequencies of the data. It included an address counter,
ALU and probability register. The frequencies from the previous module were sent through the
input port towards the ALU. Using the previously mentioned equation, the frequency of a
symbol was divided with the total symbols in ADM. The result was saved to the probability
register and sent to FADM to be overwritten at its same address location. The address counter
in the PC module was increased in order to read the next value. The probabilities in the FADM
were sent to the next module as an output.

Output

Identifier

DIM

Address counter

Input

Data comparator

Input

Identifier

FADM ADM

Address counter

Data counter

Output

Nor Alina Khairi, et al. / Design of a Huffman Data Encoder…

524

Figure 7. Block diagram for the probability calculator.

The main module of the Huffman encoder algorithm is the Huffman tree generator module, as
shown in Figure 8, which adds and connects probabilities that will subsequently become long
leaves-branches probabilities called the Huffman tree. In this work, the approach in designing
the Huffman tree was to use a memory mapping method. The probabilities from FADM in the FC
module are inserted through the probabilities comparator. The address counter acts as a
counter for increasing addresses in the memory, while the probabilities comparator has two
functions. First, the probability will be written directly into the (arranged probabilities
memory) APM if there is no repeated probability; the second function is to trigger the identifier
if there is a repeated probability. The identifier also has two functions. The identifier will
increase the data counter if there is a repeated probability, count the frequency of the
probabilities that appears and writes it in (frequency arranged probabilities memory) FAPM.
The second function of the identifier is to trigger the address counter, which sorts from lower to
higher probability values. After all probabilities have been sorted, the two lowest probabilities
will be added using the ALU module (see Figure 8). The newly added probability will be saved in
(new added probabilities memory) NAPM. The binary codes for the Huffman tree will be written
in leaves probabilities memory (LPM), leaves probabilities connectors memory (LPCM), nodes
probabilities memory (NPM), nodes probabilities connectors memory (NPCM) and parent nodes
probabilities memory (PNPM) using the memory mapping technique. The output from LPM,
LPCM, NPM, NPCM and PNPM will be sent to the final module, which is the HCG.

The final part for the Huffman encoder architecture is the Huffman code generator, as shown in
Figure 9, which generates Huffman code to the respective data using a memory mapping
method. It includes an address counter, an identifier and Huffman codes memory (HCM). The
size of the memory is 32-bit 2kbyte. The data from LPM, LPCM, NPM, NPCM and PNPM are
controlled by the address counter. The address counter acts as an address pointer that points
out the data to be read. The identifier acts as a module that follows the memory mapping
method. From the identifier, the binary data will be written in the HCM, thus producing the
Huffman code.

FADM
Address counter

From frequency
calculator module

Address counter
ALU

Probability

register

Input

Output

International Journal of Nanoelectronics and Materials
Volume 11, No. 4, Oct 2018 [517-528]

525

Figure 8. Block diagram of the Huffman tree generator.

Figure 9. Block diagram of the Huffman code generator.

Input

LPCM

From frequency

calculator module

PNPM

HCM

Address counter

Identifier

LPM

NPM NPCM

APM

Probabilities

comparator

FADM

From

frequency

calculator

module

Address

counter

Identifier

FAPM

Address

counter

Data counter

ALU

NAPM

NPM

NPCM

LPCM

PNPM

LPM

Input

Output

Nor Alina Khairi, et al. / Design of a Huffman Data Encoder…

526

4. RESULTS AND DISCUSSION

This section discusses the architecture results, which were obtained using SYNOPSYS Design
Compiler and IC Compiler. For the architecture results, a sample of 366 temperature data of 32-
bit wide was used. A timescale of 20ps and a clock period of 50ns (20MHz) was set. Table 1
shows the results for the clock cycles of the Huffman encoder. The highest time was consumed
by the HTG module, with 24472 clock cycles (47.62% of the entire process). This was followed
by DR with 32.60%, FC with 18.72%, HCG with 1% and PC with 0.06%. HTG took the longest
due to the search for the two lowest probabilities. The HTG module also consumed a significant
amount of time creating the Huffman tree and assigning binary bits.

Table 1 Breakdown percentages in the Huffman algorithm

Module Clock Cycles Percentage

Data retriever 16756 32.60%

Frequency calculator 9623 18.72%
Probability calculator 27 0.06%

Huffman tree generator 24472 47.62%
Huffman code generator 516 1.00%

Total 51394 100%

Table 2 shows the power analysis of the Huffman encoder. In the layout level, HTG consumed
the most power, that is, 1.184mW, which is 31.75%. The second most power consumed by a
module is the others module which is 23.47%, followed by HCG with 13.97%, FC with 13.65%,
PC with 10.16% and finally, DR with 7.00%. HTG consumed the most power due to the
complexity of the module, which employed most of its power use for compressing data.

Table 2 Power analysis for the Huffman encoder according to part

Module
Layout

Total Power Percentage
Data retriever 0.261mW 7.00%

Frequency calculator 0.509mW 13.65%
Probability calculator 0.379mW 10.16%

Huffman tree generator 1.184mW 31.75%
Huffman code generator 0.521mW 13.97%

Others 0.8750mW 23.47%
Total 3.7290mW 100%

Table 3 shows the area analysis for the Huffman encoder. Again, the HTG module had the largest
area at 12568.3327µm2, i.e., 48.1%. The FC module used 17.3%. The third largest module was
the HCG, which comprised 15.5%. Next was the PC module at 10.7%, followed by the DR module
with 8.0% and the rest with 0.4%. Due to the complexity of the module, HTG employed the
largest area in the module.

Table 3 Area analysis for modules in the Huffman encoder

Module Area (µm2) Percentage

Data retriever 2089.8192µm2 8.0%
Frequency calculator 4517.3513µm2 17.3%
Probability calculator 2808.7829µm2 10.7%

Huffman tree generator 12568.3327µm2 48.1%
Huffman code generator 4063.1451µm2 15.5%

Others 105.9030µm2 0.4%

International Journal of Nanoelectronics and Materials
Volume 11, No. 4, Oct 2018 [517-528]

527

Total 26153.3342µm2 100%

Table 4 shows the energy analysis for the Huffman encoder. The time taken to completely
compress 366 data was 2.5679ms. The clock cycle for the compression process was 51394 clock
cycles. It took 2.5697ms to compress all the data. Using the energy = p × t equation, where p is
power and t is time, the energy consumed by the architecture was 9.5824nJ.

Table 4 Results for Huffman algorithm energy analysis

 Huffman encoder
Total Dynamic (mW) 3.7290mW
Clock Cycle 51394
Time (ms) 2.5697ms
Energy (µJ) 9.5824µJ

Table 5 shows comparisons to previous research conducted by other authors and the present
study. It shows that the library cell used for the present study was smaller than others, resulting
in a small chip size, which was 208.35 × 207.94 µm2. The power used in this work, i.e.,
3.7290mW, was lower compared to other research, where it was 100-times higher. The
frequency (20 MHz) used was lower than in other studies. Figure10 shows the layout of the
Huffman encoder of the current study, i.e., 208.35 × 207.94 µm2. As seen in Table 5, the
comparison between all the works cannot be accepted 100% since each work used different
technology process.

Table 5 Comparisons between existing research and the present study

 Process Core size Power dissipation Operating

frequency

Park & Prasanna,
1993 [9]

2 µm 5.8 × 5.8 mm2 - -

Lin & Chang, 2009
[7]

0.18 µm 1.2 × 1.2 mm2 288mW 200 MHz

0.35 µm 2.2 × 2.2 mm2 394mW 100 MHz
Current study 0.13 µm 208.35 × 207.94

µm2
3.290mW 20 MHz

Figure 10. Physical layout of the Huffman encoder.

Nor Alina Khairi, et al. / Design of a Huffman Data Encoder…

528

5. CONCLUSION

This paper discussed the design of Huffman encoder architecture. In this design, the
architecture consists of a data retriever, frequency calculator, probability calculator, Huffman
tree generator and Huffman code generator. The architecture was simulated and verified using
the SYNOPSYS design compiler and SYNOPSYS IC compiler. The experimental results showed
that the time taken to compress a sample of 366 data of 32-bit wide was 51394 clock cycles, or
2.5697ms at a clock frequency of 20 MHz. The Huffman chip, with a size of 208.35 × 207.94 µm2,
only used 3.7290mW of power, or 9.5824µJ of energy, to compress this data. The highest power
consumption in the architecture was recorded for the Huffman tree generator, which consumed
31.75% of the total power. This was followed by the Huffman code generator and frequency
calculator, which took 13.97% and 13.65%, respectively.

REFERENCES

[1] F. Chen, A. P. Chandrakasan & V. M. Stojanovic, Design and Analysis of a Hardware-

Efficient Compressed Sensing Architecture for Data Compression in Wireless Sensors,
IEEE Journal of Solid-State Circuits 47, 3 (2012) 744-756.

[2] F. Duarte, J. Hulzink, J. Zhou, J. Stuijt, J. Huisken & H. D. Groot, A 36μw Heartbeat-Detection
Processor For A Wireless Sensor Node, ACM Transactions on Design Automation of
Electronic Systems (TODAES) 16, 4 (2011) 51, 1-19.

[3] L. Ruiz-Garcia, L. Lunadei, P. Barreiro & I. Robla, A Review of Wireless Sensor
Technologies and Applications in Agriculture and Food Industry, State of the Art and
Current Trends. Sensors 9, 6 (2009) 4728–4750.

[4] M. Al-Laham & I. M. M. El-Emary, Comparative Study between Various Algorithms of Data
Compression Techniques, IJCSNS International Journal of Computer Science and Network
Security 7, 4 (2007) 281-291.

[5] S. R. Kodituwakku & U. S. Amarasunghe, Comparison of Lossless Data Compression
Algorithms for Text Data, Indian Journal of Computer Science and Engineering 1, 4 (2010)
416-425.

[6] S. Shanmugasundaram & R. Lourdusamy, A Comparative Study of Text Compression
Algorithms, International Journal of Wisdom Based Computing 1, 3 (2011) 68-76.

[7] M. B. Lin & Y. Y. Chang, A New Architecture of a Two-Stage Lossless Data Compression and
Decompression Algorithm, IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 17, 9 (2009) 1297-1303.

[8] M. B. Lin, J. F. Lee & G. E. Jan, A Lossless Data Compression and Decompression Algorithm
and Its Hardware Architecture, IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 14, 9 (2006) 925-936.

[9] H. Park & V. K. Prasanna, Area Efficient VLSI Architectures for Huffman Coding, IEEE
Transactions on Circuits and Systems II: Analog and Digital Signal Processing 40, 9 (1993)
568-575.

