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ABSTRACT 
 

Wireless sensor networks (WSNs) are important in today’s technology for helping to 
monitor our environment. WSNs are widely used in military, medical and industrial 
environments. It is capable of monitoring, collecting and transmitting data to a primary 
server wirelessly. Wireless sensor nodes are powered by a limited energy supply such as a 
small battery or an energy harvester that generally produces a small amount of energy. To 
extend the lifetime of the device, energy consumption must be reduced. Data transmission 
is known to consume the largest percentage of energy in a sensor node. One method for 
reducing energy is by compressing the data prior to transmitting it. This study analyses the 
performance of the Huffman architecture in terms of compressing data that are commonly 
used in wireless sensor nodes. The primary module in the architecture comprises a data 
retriever, frequency calculator, probability calculator, Huffman tree generator and 
Huffman code generator. From the experimental results, the Huffman circuit architecture 
simulation consumed 51394 clock cycles to completely compress 366 data samples, using 
3.729mW of power consumption. Based on a 20MHz clock frequency, this is equivalent to 
9.5824µJ of energy consumption. Based on our analyses, the Huffman tree generator 
consumed the most power at 1.184mW, equivalent to 31.75% of overall power 
consumption. 

 
Keywords: Wireless Sensor Node; Huffman architecture; reduce energy; power 
consumption. 
 
 

1. INTRODUCTION 
 
The use of wireless communication devices have been increasing due to its low maintenance 
and portable features [1]. This has resulted in the rapid development of wireless sensor nodes. 
The function of this device is to monitor and collect data that will later be transmitted wirelessly 
to a main server or station [2]. Such a system can be implemented in many different 
environments due to its wireless characteristics, e.g., in the contexts of agriculture and food 
industry [3]. 
 
Due to the small size of these nodes, energy and storage capacities are limited. Thus, energy 
consumption is one of the problems that occur when using wireless sensor node devices [1]. 
Researchers need to find approaches for reducing power consumption in order to increase the 
device’s lifetime and without frequently replacing their batteries. 
 
It has been established that transmission modules consume the most energy within sensor 
nodes [1]. This is due to the significant energy needed for powering up the wireless transmitter 
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or receiver in order to transmit or receive data. One approach for reducing energy usage is to 
compress data prior to transmitting it. The amount of data required to be transmitted is in this 
way reduced, which will reduce the energy used in the transmission process. The higher the 
compression ratio of the data, the more energy can be saved. 
 
This study is written as follows. Section 2 discussed on work done related to a number of data 
compression algorithm and Huffman algorithm architectures in the present literature. The 
method used in this study is described in section 3. In section 4, it presents the results and 
discussions upon the conducted research, which will be presented in detail. Section 5 concludes 
this work. 
 
 
2. LITERATURE REVIEW 

  
A survey was conducted on various data compression algorithms that compress different types 
of data formats and included the Huffman and Lempel-Ziv-Welch (LZW) algorithms [4]. This 
survey was conducted in order to suggest an efficient algorithm with respect to its 
corresponding data types. The data used in this work included .DOC, .TXT, .BMP, .TIF, .GIF and. 
JPG files. For text file data, the results for both algorithms were nearly the same. The results for 
the LZW algorithm were better than for the Huffman algorithm in the case of .BMP image file 
compression. For .GIF and .JPG data types, the results after compression were larger than the 
original file size. 
 
Experiments including various types of data compression for compressing text data were 
conducted [5]. The purpose of these experiments was to conclude the algorithm best suited to 
text data. In this experiment, run length encoding (RLE), static Huffman, adaptive Huffman, 
Shannon Fano, arithmetic and LZW data compression algorithms were used to compress text 
data. The LZW algorithm achieved the highest saving percentages among all algorithms. Both 
types of Huffman algorithms and the Shannon Fano algorithm yielded an average saving 
percentage, whereas the RLE algorithm had the lowest saving percentage. Although LZW 
obtained the highest saving percentage, a problem occurred; as the file's size increased, the 
dictionary size also increased; this as due to an increase in entries for the input data. 
 
A study was conducted on various types of data compression using text data as an input [6]. The 
study primarily focused on the bit per character (bpc) of each type of data compression. The 
study was divided into two categories: statistical compression technique and dictionary based 
compression technique. For statistical compression technique, a RLE algorithm achieved an 
average of 7.93bpc, rendering it inefficient for compressing the data, as the bits for a character 
was the longest among all algorithms. The Shanon Fano algorithm achieved 5.50bpc, which was 
the second longest. Huffman and adaptive Huffman coding achieved 5.27bpc and 5.21bpc, 
respectively, which was considered to be moderate. The lowest bpc achieved was for arithmetic 
coding, which was 5.51bpc. For the Dictionary-based compression technique, Lempel-Ziv-77 
(LZ-77) achieved 3.88bpc, which was the highest among the other three algorithms. Lemperl-
Ziv-Storer-Szymanski (LZSS), Lempel-Ziv-Huffman (LZH) and Lempel-Ziv-Bell (LZB) each 
achieved 3.32bpc, 3.22bpc and 3.11bpc, respectively. Lempel-Ziv-78 (LZ-78) achieved 4.26bpc, 
while the highest bpc was achieved by LZW at 4.90bpc. Lempel-Ziv-Fiala-Green (LZFG) achieved 
the lowest bpc at 2.89bpc. 
 
A study of hardware architectures on two stage lossless data compression and a decompression 
algorithm was conducted [7]. The purpose of the study was to increase the performance of the 
algorithm and to reduce the size of the designed architecture. The chosen algorithms used in the 
work were a combination of the Parallel Dictionary Lempel-Ziv-Welch (PDLZW) algorithm and 
an approximated adaptive Huffman dynamic-block (AHDB) algorithm. This study is an update to 
the previous study conducted by Lin, Lee & Jan (2006) [8], using a content-addressable memory 
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(CAM) dictionary in PDLZW changed to CAM-tag-based and CAM-based ordered list in AHDB 
changed to memory-inter-reference (MIR) that uses two static random access memory (SRAM). 
Improvements were made to reduce hardware cost and to increase the performance of the 
algorithm. 
 
A simple and area-efficient very large-scale integration (VLSI) architecture was proposed for 
Huffman coding [9]. The memory storage supports real-time encoding and decoding. A few 
simple arithmetic operations were also performed on the chip for encoding and decoding 
processes. In the work, a simple scheme that maps the Huffman tree onto memory was 
proposed; 2n × (log1 n + 1) bits of memory for log n-bit symbols where required for the scheme 
where n denoted the number of leaves in the Huffman tree and where n is a power of 2. An 
average of O (log n) time units was required to encode or decode a symbol. 
 
 
3. METHODOLOGY 

 
This section describes the methods and data used in this work. The Huffman algorithm is firstly 
presented, followed by discussions of the block diagrams of the Huffman architecture. 
 
A Huffman algorithm is a technique where the symbols or characters in a sample are converted 
into binary code. The high occurrence of symbols or characters is converted into shorter binary 
codes, whereas the less frequent occurrences are converted into longer binary code. Figure 1 
shows the flow chart of the Huffman encoder. Before Huffman code can be generated, all 
symbols in the sample were initially read. Then, the probabilities for each symbol were 
calculated using the following equation, 
 
Probability of a symbol (i) = Frequency of symbol (i) ÷ Total symbols in a sample                 (1) 
 
where i is the symbol in a data sample. Next, the number of calculated probabilities was 
checked. If it only contained one probability, the next step followed; where there was more than 
one probability, these were sorted from high value to low value probabilities. Two lowest 
probabilities were then added to create a new probability. The process was repeated until there 
was only one probability left. In the next part, binary code was assigned between the connectors 
of the two probabilities. A higher value probability is assigned as high (1) and a lower 
probability value as low (0). This began from the highest, most likely probability, which was 1.0. 
From here, both probabilities were checked in terms of whether they included more 
probabilities. If there were probabilities under its branch, the next lower probabilities were 
readied for the following assigned binary bit. The process was repeated until there were no 
probabilities left. The results formed a Huffman tree or binary tree that contained branches and 
leaves. The leaves represented the probabilities for symbols, while the branches signalled the 
connection between the leaves. The next process was to read the binary bits in order to create 
Huffman code. The bits were read from the connectors that linked from the highest, most likely 
probability to the branch towards the end of the connectors, which were the leaves. 
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Figure 2 shows an example of how a Huffman tree is created. There are three symbols, i.e., A, B 
and C, each with their respective probabilities, which are 0.6, 0.1 and 0.3, sorted from low 
probability to high probability. The two lowest probabilities are added together to create a new 
probability, i.e., D. Then, the new probability is sorted with another probability, i.e., A, from low 
probability to high probability. From there, both probabilities are added to a sum of 1. The 
dotted boxes are the leaves of the Huffman tree, while the line arrows are the branches of the 
Huffman tree that connects between leaves. 
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               Figure 1. Flow chart for the Huffman encoder. 
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Figure 3. Flow chart for the Huffman decoder. 
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Figure 3 illustrates the flow chart of the Huffman decoder. Firstly, the sequence of binary bits 
that contain Huffman code was read. Then, the first bit was read. Next, a bit by bit comparison 
was made using the existing Huffman code. If there was a match, the symbol of the matched 
code was outputted. If no match was found for the corresponding Huffman code, the next bit 
was added until the Huffman code was found. When the corresponding bit and code were 
matched, the binary bits in the sequence were deleted. The process was repeated until all binary 
bits in the sequence were deleted. 
 
Based on the analysis using Matlab algorithms, five main computational modules were required 
for the Huffman module. They were a data retriever (DR), frequency calculator (FC), probability 
calculator (PC), Huffman tree generator (HTG) and Huffman code generator (HCG). These 
computational modules were important for Huffman operation. Figure 4 shows a block diagram 
for the top level of the architecture. The DR module retrieved samples from an input port. The 
width of the port was 32 bits. The module saved the sample data to memory. Next, the FC 
module calculated the frequency of the symbols or characters in the sample. The symbols were 
calculated using the summation and division logic of an arithmetic logic unit (ALU) module 
inside the main FC module. The calculated values were saved to memory. The PC module's 
function was to calculate the probability of the symbols of the sample. The probability 
calculation was performed using the saved frequency values in the memory and the ALU 
module. The calculated probabilities were saved to memory. After the probabilities were 
calculated, the next module, which was HTG module, sorted the probabilities as described in the 
previous section. The sorting of probabilities used a number of registers and memories in order 
to save its binary codes and its locations within the generated Huffman tree. Finally, the last 
module, the HCG, generated the Huffman code that had been saved in the previously mentioned 
memories. A number of registers were used to arrange the binary codes. The arranged binary 
code, which was the Huffman code, was later saved to memory. The detail operation of these 
modules will be described in the following paragraph. 

 
Figure 4. Top level of the Huffman encoder. 

 
Figure 5 shows the block diagram for the data retriever module. The function of the module is to 
save input data into a memory. The module consists of 32-bit 4kbyte data insert memory (DIM), 
an identifier and an address counter. The data will be inserted using an input port that is 32-bit 
wide. An identifier will identify the input data, where an incoming input datum will increase the 
address counter; no incoming data will keep the address counter in a holding state. The address 
counter is used to set the address of the memory for the datum to be written in its individual 
address. The output port will transfer the saved data into the next module, which is the FC 
module. 
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Figure 5: Block diagram for data retriever. 

 
The block diagram for the frequency calculator module is shown in Figure 6. The function of the 
module is to calculate the frequency of the saved input data. The module contains 32-bit 2kbyte 
arranged data memory (ADM), 16-bit 2kbyte frequency arranged data memory (FADM), an 
identifier, an address counter, data counter and a data comparator. A series of saved data are 
inserted through the input. The first datum from the series is saved into the data comparator. 
The purpose of the data comparator is to compare the saved datum with the series of saved 
data. When there is a match, the identifier will be triggered. The identifier has two functions: to 
increase the data counter and to increase the address counter when the entire series of data has 
been read. To save the next datum’s frequency, the address counter is increased. Thus, for each 
datum, the respective frequency will be saved to the same address as in ADM. 
 

 
Figure 6. Block diagram for the frequency calculator. 

 
The next module in the Huffman algorithm was probability calculator, as shown in Figure 7, 
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in the PC module was increased in order to read the next value. The probabilities in the FADM 
were sent to the next module as an output. 
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Figure 7. Block diagram for the probability calculator. 

 
The main module of the Huffman encoder algorithm is the Huffman tree generator module, as 
shown in Figure 8, which adds and connects probabilities that will subsequently become long 
leaves-branches probabilities called the Huffman tree. In this work, the approach in designing 
the Huffman tree was to use a memory mapping method. The probabilities from FADM in the FC 
module are inserted through the probabilities comparator. The address counter acts as a 
counter for increasing addresses in the memory, while the probabilities comparator has two 
functions. First, the probability will be written directly into the (arranged probabilities 
memory) APM if there is no repeated probability; the second function is to trigger the identifier 
if there is a repeated probability. The identifier also has two functions. The identifier will 
increase the data counter if there is a repeated probability, count the frequency of the 
probabilities that appears and writes it in (frequency arranged probabilities memory) FAPM. 
The second function of the identifier is to trigger the address counter, which sorts from lower to  
higher probability values. After all probabilities have been sorted, the two lowest probabilities 
will be added using the ALU module (see Figure 8). The newly added probability will be saved in 
(new added probabilities memory) NAPM. The binary codes for the Huffman tree will be written 
in leaves probabilities memory (LPM), leaves probabilities connectors memory (LPCM), nodes 
probabilities memory (NPM), nodes probabilities connectors memory (NPCM) and parent nodes 
probabilities memory (PNPM) using the memory mapping technique. The output from LPM, 
LPCM, NPM, NPCM and PNPM will be sent to the final module, which is the HCG. 
 
The final part for the Huffman encoder architecture is the Huffman code generator, as shown in 
Figure 9, which generates Huffman code to the respective data using a memory mapping 
method. It includes an address counter, an identifier and Huffman codes memory (HCM). The 
size of the memory is 32-bit 2kbyte. The data from LPM, LPCM, NPM, NPCM and PNPM are 
controlled by the address counter. The address counter acts as an address pointer that points 
out the data to be read. The identifier acts as a module that follows the memory mapping 
method. From the identifier, the binary data will be written in the HCM, thus producing the 
Huffman code. 
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Figure 8. Block diagram of the Huffman tree generator. 

 

 
 

 
 

 

Figure 9. Block diagram of the Huffman code generator. 
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4. RESULTS AND DISCUSSION 

 
This section discusses the architecture results, which were obtained using SYNOPSYS Design 
Compiler and IC Compiler. For the architecture results, a sample of 366 temperature data of 32-
bit wide was used. A timescale of 20ps and a clock period of 50ns (20MHz) was set. Table 1 
shows the results for the clock cycles of the Huffman encoder. The highest time was consumed 
by the HTG module, with 24472 clock cycles (47.62% of the entire process). This was followed 
by DR with 32.60%, FC with 18.72%, HCG with 1% and PC with 0.06%. HTG took the longest 
due to the search for the two lowest probabilities. The HTG module also consumed a significant 
amount of time creating the Huffman tree and assigning binary bits. 

 
Table 1 Breakdown percentages in the Huffman algorithm 

 
Module Clock Cycles Percentage 

Data retriever 16756 32.60% 

Frequency calculator 9623 18.72% 
Probability calculator 27 0.06% 

Huffman tree generator 24472 47.62% 
Huffman code generator 516 1.00% 

Total 51394 100% 

 
Table 2 shows the power analysis of the Huffman encoder. In the layout level, HTG consumed 
the most power, that is, 1.184mW, which is 31.75%. The second most power consumed by a 
module is the others module which is 23.47%, followed by HCG with 13.97%, FC with 13.65%, 
PC with 10.16% and finally, DR with 7.00%. HTG consumed the most power due to the 
complexity of the module, which employed most of its power use for compressing data. 
 

Table 2 Power analysis for the Huffman encoder according to part 

 

Module 
Layout 

Total Power Percentage 
Data retriever 0.261mW 7.00% 

Frequency calculator 0.509mW 13.65% 
Probability calculator 0.379mW 10.16% 

Huffman tree generator 1.184mW 31.75% 
Huffman code generator 0.521mW 13.97% 

Others 0.8750mW 23.47% 
Total 3.7290mW 100% 

 
Table 3 shows the area analysis for the Huffman encoder. Again, the HTG module had the largest 
area at 12568.3327µm2, i.e., 48.1%. The FC module used 17.3%. The third largest module was 
the HCG, which comprised 15.5%. Next was the PC module at 10.7%, followed by the DR module 
with 8.0% and the rest with 0.4%. Due to the complexity of the module, HTG employed the 
largest area in the module. 

 
Table 3 Area analysis for modules in the Huffman encoder 

 
Module Area (µm2) Percentage 

Data retriever 2089.8192µm2 8.0% 
Frequency calculator 4517.3513µm2 17.3% 
Probability calculator 2808.7829µm2 10.7% 

Huffman tree generator 12568.3327µm2 48.1% 
Huffman code generator 4063.1451µm2 15.5% 

Others 105.9030µm2 0.4% 
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Total 26153.3342µm2 100% 

Table 4 shows the energy analysis for the Huffman encoder. The time taken to completely 
compress 366 data was 2.5679ms. The clock cycle for the compression process was 51394 clock 
cycles. It took 2.5697ms to compress all the data. Using the energy = p × t equation, where p is 
power and t is time, the energy consumed by the architecture was 9.5824nJ. 

 
Table 4 Results for Huffman algorithm energy analysis 

 
 Huffman encoder 
Total Dynamic (mW) 3.7290mW 
Clock Cycle 51394 
Time (ms) 2.5697ms 
Energy (µJ) 9.5824µJ 

 
Table 5 shows comparisons to previous research conducted by other authors and the present 
study. It shows that the library cell used for the present study was smaller than others, resulting 
in a small chip size, which was 208.35 × 207.94 µm2. The power used in this work, i.e., 
3.7290mW, was lower compared to other research, where it was 100-times higher. The 
frequency (20 MHz) used was lower than in other studies. Figure10 shows the layout of the 
Huffman encoder of the current study, i.e., 208.35 × 207.94 µm2. As seen in Table 5, the 
comparison between all the works cannot be accepted 100% since each work used different 
technology process. 

 
Table 5 Comparisons between existing research and the present study 

 
 Process Core size Power dissipation Operating 

frequency 

Park & Prasanna, 
1993 [9] 

2 µm 5.8 × 5.8 mm2 - - 

Lin & Chang, 2009 
[7] 

0.18 µm 1.2 × 1.2 mm2 288mW 200 MHz 

0.35 µm 2.2 × 2.2 mm2 394mW 100 MHz 
Current study 0.13 µm 208.35 × 207.94 

µm2 
3.290mW 20 MHz 

 
 

 
 

Figure 10. Physical layout of the Huffman encoder. 
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5. CONCLUSION 
 
This paper discussed the design of Huffman encoder architecture. In this design, the 
architecture consists of a data retriever, frequency calculator, probability calculator, Huffman 
tree generator and Huffman code generator. The architecture was simulated and verified using 
the SYNOPSYS design compiler and SYNOPSYS IC compiler. The experimental results showed 
that the time taken to compress a sample of 366 data of 32-bit wide was 51394 clock cycles, or 
2.5697ms at a clock frequency of 20 MHz. The Huffman chip, with a size of 208.35 × 207.94 µm2, 
only used 3.7290mW of power, or 9.5824µJ of energy, to compress this data. The highest power 
consumption in the architecture was recorded for the Huffman tree generator, which consumed 
31.75% of the total power. This was followed by the Huffman code generator and frequency 
calculator, which took 13.97% and 13.65%, respectively. 
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