

EPJ Web of Conferences 162, 01070 (2017) DOI: 10.1051/epjconf/201716201070

InCAPE2017

Published manuscript : https://doi.org/10.1051/epjconf/201716201070

Design and analysis of microcontroller system using AMBA-
Lite bus

Wang Hang Suan1,*, and Asral Bahari Jambek2

1,2 School of Microelectronic Engineering, University Malaysia Perlis, Perlis, Malaysia

Abstract. Advanced Microcontroller Bus Architecture (AMBA) is one of the well-designed
on chip communication system. It is design for right first-time development with many
processor and peripherals. In this paper, the different family of AMBA architecture such as
AXI, APB, AHB and so on are reviewed. In this work, the AMBA-Lite is used to implement
with a few peripherals and an ARM processor. The work is simulated using Synopsys and
demonstrated on the Digilent Nexys4 DDR board and the software use to synthesis the
design is Vivado 2016.2.

1 Introduction

The demand of microcontroller is increasing rapidly in

this few decades. It can be found in many daily

application such as washing machine, refrigerator,

automobile and et al. The technology for miniaturised

the system is now more concern by the designer. The

silicon technology has been developed from a few

transistor to hundreds of million transistors since the

invention of microprocessor. Today, the technology

allow the integration of different part of component into

a single chip which also known as System on Chip

(SoC) [1].

One of the main advantage of the SOC is the

intellectual property (IP) can be reuse in other design.

The Advanced Microcontroller Bus Architecture

(AMBA) developed by ARM Ltd. is also design for this

purpose. Therefore, AMBA architecture is most widely

used in communication interface [2]. The AMBA-Lite is

a simplified version of the AMBA bus family, but it can

only support a single master. This cause some of the

signals for multi-master system is removed like

HGRANT, HBUSREQ.

Besides, the AMBA-Lite is also support high-

bandwidth operation this include burst transfer, single

clock edge operation, non-tristate implementation and so

on [3]. The bus consists of one address decoder and one

multiplexor to select the correct slave. The master starts

giving the address and control signals. The write data

then moves data from master to slave or vice versa. All

slaves will be able to extend the data phase by making a

request to master and send a response to the master.

In this work, an ARM soft processor and the AMBA-

Lite are implemented on the Digilent Nexys4 DDR

board. Section II discusses other research work on the

different AMBA architecture. Next, section III show the

methodology to implement a simple microcontroller

using IP developed by ARM. In section IV, the result is

shown on the board and on the monitor and the result is

discussed and analysed.

2 Literature review

In paper [4], an extensible interface bus (AXI) was used

in the design Input Output (IO) system. The AXI like

other Advanced Microcontroller Bus Architecture

(AMBA) which are a high performance on chip

communication buses. The slaves and master interface

were developed with AXI on chip communication

standard interface. The master was an Arithmetic Logic

Unit (ALU) which can perform 22 operations, while the

slave peripherals were SRAM, ROM, and FIFO. The

AXI act as a medium between the master and the slaves,

where the master will start to initiate the address. The

round robin arbiter was used to select the slave where

this type of arbiter depend upon the request from master.

Fig. 1 show the block diagram of the AMBA IO system.

Fig. 1. AMBA IO block diagram. [4]

 In paper [5], a system had been designed with a

processor that will send the address to the synthesized

memory and read the data. First, a .bin file had been

generated using Keil software. Then the file was

implemented into a synthesized VHDL module. A

Divider Clock Manager (DCM) was used to generate 10

MHz The Core Generator tool was used to 4KB RAM

and using the 32bit of data access which shown in Fig 2.

The result shown was turn on or turn off the Light

Emitted Diode (LED) and the maximum clock speed

was 40MHz.

Fig. 2. Block diagram of the system. [5]

 In paper [6], a design with an arbiter was used in the

system. Fig 3 shows the AMBA AHB interconnect

matrix for multichannel technique was used. The arbiter

will decide which master can access the bus, then the

master only can initiate read and write. This system used

a combination of round robin and dynamic arbiter. The

master will be chosen if any of the master request and

will reduce one priority. The system designed with a few

master, an arbiter, slave and decoder. The result shown

that the output data was successfully come out under the

simulation.

Fig. 3. Block diagram of interconnect matrix.[6]

In paper [7], an Advanced Peripheral Bridge (APB)

bridge was used. The system was designed to minimise

the clock skew by adding a 3 bits ripple down counter.

The flip flop was clocked sequentially, so that the data

output of source flip flop can only toggle the clock of

sink flip flop. The bridge act as a single master for the

connected peripherals which perform read and write

transfers. The bridge consists of a state machine, a reset

controller, and the ripple down counter sub-module. The

undesired clock skew can be avoided by using this

approach. The result shown that by using the ripple

down counter can also reduce the power on chip and

total clock domain.

In paper [8], the Advanced System Bus (ASB) was

implemented. The operation start from the master

contact with the bus. Then the arbiter will determine its

status before the master start transfer data. The decoder

will then select the slave and a response will give back to

the master. The bridge act as a slave to the master so it

continues putting wait state on the master only when

they needed. The bridge consisted of a state machine and

decoding logic to select signals. The state machine of the

system shown in Fig 4 which the decoding cycles start

before the slave response. The system bus used was

50MHz with 32 bits of address and data buses. Besides,

the system was assumed to connect with 4 peripherals.

Fig. 4. State machine of the APB bridge.[8]

The summary of different bus architecture made by

others is shown in table 1. The purpose of paper [7] and

[8] is more to reduce power consumption while others is

on functional. The usage of arbiter depends on the

application; it is used when more than one master is

implemented. Besides, the bridge needs to avoid any

clock skew or timing violation when design the system.

Table 1. Summary of the methods by others paper.

 [4] [5] [6] [7] [8]

Master ALU Cortex
M0

DSK

- - -

Bus
Architectu

re

AXI AHB-
Lite

AHB APB ASB

Slave SRAM

ROM

FIFO

LED

Memory

- APB

bridge

APB

bridge

Arbiter Round

Robin
arbiter

- Round

robin
and

dynamic

- -

Total

power

- - - 0.57mW 0.66m

W

3 Methodology

In this section, the design of the top module and the

individual module on how it work will be explain. The

program of the microcontroller is store inside the

memory which is written in Verilog code. The size of the

memory can be define inside the code, in this system,

4KB of memory is sufficient to store the program. Since

it is an internal memory, the program and the

architecture is implement together into the board

together. In this research, an ARM Cortex-M0 Design

Start Processor, an Advanced High-performance bus

(AHB) lite, an internal memory, an Universal

Asynchronous Receiver Transmitter (UART) peripheral,

a Video Graphics Array (VGA) peripheral, a timer

peripheral, a General Purpose Input Output (GPIO)

peripheral, a Light Emitting Diode (LED) peripheral,

and a 7-segment peripheral are used. All these module is

written in the form of Verilog code and can be reusable

on other design. The Fig 5 show the system block

diagram with each has the interface to interact with the

AMBA-Lite. The most important aspect to integration is

the address mapping. The address need to be correct so

that the bus is able decode it to the right IP. Besides,

inside the application program, the programmer need to

know where is the IP address in order call the respective

IP.

Fig. 5. The peripheral used in the system.

First, the program which the instruction to be

executed by the processor is compiled from assembly

code into machine code using Keil μVision before target

into the board as mention above. The LED peripheral is

a simple block to interact with the 8 LED on the board

for other application purposes. In this paper, the LED is

connected to GPIO, when the GPIO receive the signal

from switch, it will turn on the LED. The GPIO has a

data direction register to indicate the signal either is

input or output signal.

On the other hand, the VGA is a more complex

module which consists of a few sub-module inside. One

of the sub-module is VGA interface, it is used to

generate synchronization signals to the VGA port and

transfer the colour to the pin on the board. Besides, it has

image buffer and text console, which are used to store

the colour information in the image region and display

text respectively. The text console is implemented on the

hardware logic so that it can save the valuable on-chip

memory. The VGA connector is coming along the

function to convert the digital output to analogue using

resistor divider. The hierarchy of the VGA module as

depicted in Fig 6.

Fig. 6. Hierarchy of the VGA module. [9]

Next, the timer module is a software timer to act

like a clock to count the event and the result is display

on the 7-segment display and it is programmed to reset

when it reach zero. It is based on the hardware timer but

when it compared to a hardware timer, it has a lover

level of precision. In this module, it has a 32-bit counter,

which start from ‘FFFF’.

The module has a programmable register to control

the frequency of the counter and the load value. The

timer prescale value can be set as 1 bit, 16 bits or 256

bits. Besides, there are two mode available for interrupt

to occur, which are free running mode and periodic

mode. These types of interrupt enable different program

can be run on the same time and without modify the

timer architecture.

In this paper, the application will not use any

interrupt, therefore, the four digit of 7-segment display

will use to show the result. In order to use the 7-segment

display, a decoder is needed. It is design based on the

four registers to display the 32-bit counter with a 1 kHz

looping frequency. The peripheral is set for common

anode display since the 7-segment display of Digilent

Nexys4 DDR board is an anode type.

Besides, this architecture also integrate the UART

module which can receive or send signal through serial

port. The UART is also consists of some sub-module

such as module to generate a fixed transmission baud

rate, a First In First Out (FIFO) register to buffer the data

to be sent or received. The UART module is designed

with a start bit and a stop bit to indicate finishing

transfer.

In this paper, the baud rate is set to be 19200 bps,

and an open source software called Tera Term is used to

communicate between the laptop and the board. The

table 1.1 show that the memory map of each peripheral

in this design. The peripherals module used is all

available on the ARM university program website [9].

Table 2. Memory map design.

Module Base address End address

BRAM 0x0000_0000 0x4FFF_FFFF

VGA 0x5000_0000 0x50FF_FFFF

UART 0x5100_0000 0x51FF_FFFF

Timer 0x5200_0000 0x52FF_FFFF

GPIO 0x5300_0000 0x53FF_FFFF

7-seg 0x5400_0000 0x54FF_FFFF

LED 0x5500_0000 0x55FF_FFFF

4 Result and discussion

In this paper, the simulation result using Synopsys is

carried out. The result shows is same as intended and

carried out in different part based on IP. Fig 7, an input

act as a switch is added to test the GPIO IP. The LED

then have the same output based on the input (sw). Fig 8

show the UART IP is send out a signal from the system.

The word “TEST” is stored in the memory which is the

application program is transmit out from RsTx. It can be

interpret using the ASICII character. For example, from

the ASICII, the “T” is 1010100 as shown in figure, with

a zero start bit and a one stop bit.

Fig. 7. The simulation on GPIO and LED IP.

Fig. 8. The content of memory is send out on UART IP.

Fig. 9. The content of memory is send out on RGB IP.

Fig. 10. The timer IP is count down and shown on 7segdec IP.

Fig 9 show the content stored in memory is displayed

on RGB and the colour is set as green which is

00011100. The word “HELLO” is displayed which is

also demonstrated in FPGA.

Fig 10 show the timer is counting down and the 7

segment decoder is decode the time. Four digits is

displayed and for the first digit is 00001100 and the next

state is 00001011. The figure for the timer is use to

debug and to check for the state is running from one

state to another. The timer has a prescalar that can be set

the clock to for an extra 16 count or 256 count which can

be seen clk16 and clk256.

Meanwhile, the Digilent Nexys4 DDR FPGA board

is used to run the ARM IP architecture using Vivado

2016.2. The UART communicates with the laptop using

Tera Term with a baud rate 19200bps. The Fig 7 show

the word ‘HELLO’ is stored in the memory is printed

out on the screen. In this figure, the result shown has two

IP have used. The word ‘HELLO’ which previously

stored in the hex file is shown on the first line of another

monitor using VGA IP. Another IP used is the UART IP

and the result is transferred from the board to the laptop

screen via UART terminal.

Fig. 11. The content of memory is printed out on screen.

In Fig 8, the result shows that the timer is decreasing

in the 7-segment display from FFFF to 0000, with a 16-

bit prescaler. The prescaler can be set using the program

to determine the speed of the count down. There is no

interrupt function in this case, but the program can be

added to this IP that is developed by ARM [10]. Besides,

the figure also show that the LED is turn on according to

the respective switch below it using GPIO module.

Fig. 12. The timer is counting down.

4 Conclusion

In this paper, an AMBA-Lite with a few peripherals was

implemented on to the FPGA board and the result

showed was same as intended. The result is verify using

Synopsys and implement on the FPGA Digilent Nexys4

DDR board. The ARM Cortex-M0 Design Start was

used as the processor to run the program inside the

memory where the application was compiled using ARM

tool chain.

The author would like to acknowledge the support from the

Sciencefund under a grant number of 03-01-15-SF0229 from

the Ministry of Science, Technology & Innovation, Malaysia.

References

1. K. S. Kumar, P. Deepthi, IJERA 3, 1005-1010

(2013)

2. A. Laurentiu, B. Angel, WCE I, 459-464 (2015)

3. "AMBA 3 AHB-Lite Protocol," 1.0 ed: ARM Ltd.

(2006)

4. K Swetha, G. Ramakrishna, IJEERT 2, 51-59 (2014)

5. M. J. Oviedo, P. A. Ferreyra, VII DF 87-93 (2011)

6. S. Divekar, A. Tiwari, ICCSP, 1854-1858 (2014)

7. K. Rawat, K. Sahni, S. Pandey, J. Rawat, and S.

Tripathi, IC4, 1-4 (2015)

8. K. Rawat, K. Sahni, and S. Pandey, SPIN, 927-930

(2015)

9. "DesignStart - ARM," 1.0 ed: ARM Ltd.

10. "Cortex-M0 Technical Reference Manual

Copyright," ed: ARM Ltd., (2009).

