
The Latest Trend in Nano-bio sensor Signal 

Analysis 

 
Abstract—This paper discusses a nanoscale biosensor and 

its signal analysis algorithms. In this work, five nanoscale 

biosensors are reviewed, which namely silicon nanowire FET 

biosensors, polysilicon nanogap capacitive biosensors, 

nanotube amperometric biosensors, gold nanoparticle-based 

electrochemical biosensors and quantum dot-based 

electrochemical biosensors. Each biosensor produces a 

different output signal depending on their electrical 

characteristics. Five signal analysers are studied, with most 

of the existing signal analyser analysis based on the 

amplitude of the signal. Based on the analysis, auto-

threshold peak detection is proposed for further work. 

Index Terms—Nano-bio sensor; Bio sensor signal analysis.  

1.  INTRODUCTION 

Over the past decade, nano-technologies have grown 

rapidly. This take the advantages of nanoscale biosensors 

to improve their sensitivity due to their suitable properties.  

Nano structures, such as nanogaps, nanowires, 

nanoparticles, nanotubes, nanoscale films and quantum 

dots(QDs), are implemented in biosensors to produce 

nanoscale biosensors.  

The signal of nanoscale biosensors can be analysed in 

terms of amplitudes, phases, frequencies and delays. 

Hence, an efficiency signal analysis algorithm is required 

to support the growth of nanoscale biosensors. Under the 

conventional method, signal analysis is performed by a 

human using an off-chip device. This approach has the 

potential to lead to human, error, and is expensive, time 

consuming and not suitable for portable lab-on-chip 

applications. With the growth of system-on-chip (SoC) 

technology, it is possible to develop on-chip analyzer for 

nano-biosensors. 

2.  NANO-BIO SENSORS 

In this section, the latest nano-biosensor will be 

reviewed. The operation of the device will be discussed 

and the electrical signal output from the sensor will be 

highlighted. The authors in [1], [2] proposed silicon 

nanowire field-effect-transistor (SiNW-FET) -based 

biosensors for highly selective, sensitive, label-free and 

real-time measurements. Fig. 1 illustrates the working 

system and principle of the SiNW-FET-based biosensor. 

SiNW-FET-based biosensors consist of drain, source and 

gate electrodes. The drain and source electrodes function 

as the bridgeheads of the semiconductor device channel, 

which allows the current to flow from the source to drain. 

In the SiNW-FET-based system, the biological receptors 

were anchored on the surface of the silicon nanowires to 

recognize target analytes. When the target was bound by 

receptors, the surface potential underwent changes and the 

channel conductance was modulated. Fig. 2 illustrates the 

results of SiNW-FET both without and with the designed 

receptor for uncharged steroid concentration 

measurements. From the graph, we can see that the SiNW-

FET with the designed receptor will increase conductance, 

while the concentration of 19-NA increases; however, for 

the SiNW-FET without the designed receptor, the 

conductance remains the same while the concentration of 

19-NA increases. 

 

The authors in [3], [4] proposed polysilicon nanogap 

capacitive biosensors. Fig 3 illustrates the nanogap cavity 

using SEM. The fabrication of the biosensor involves 

using the conventional simple dry oxidation process and 

the lithographic process. Nanoscale dielectric spectroscopy 

was used between the nanogap patterns to measure the 

potential of hydrogen (pH) value. The device was used to 

study the capacitance-frequency (C-F) relationship and the 

capacitance-voltage (C-V) relationship. Fig. 4 shows the 

C-F relationship and the C-V relationship. The results 

show that the lowest gap-value for the nanogap structure 

will provide better sensitivity of pH detection. This is due 

to the C-V and C-F characteristics of the device.  

 

The authors in [5]–[7] proposed an amperometric 

biosensor based on tyrosinase (Ty)/carboxyl functionalized 

single-walled carbon nanotubes (SWCNTs) and a 

modified carbon screen-printed electrode (SPE) for 

tyramine detection. The biosensor is used for assaying 

tyramine in fish products. Fig. 5 illustrates the enzymatic 

reactions of tyramine in the presence of tyrosinase. Fig. 6 

illustrates the response of the sensors to the tyramine, 

while Fig. 7 shows the influence of the pH value on the 

biosensor response. The biosensor has good linearity, with 

the concentration of tyramine within the range of five–180 

microM, with a sensitivity of 0.7414 A x M-1 for the 

optimal conditions and a detection limit of 0.62 microM.  
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Fig. 1. The working system and principle of the SiNW-

FET biosensor [1]. 

 

 
Fig. 2. Real-time of recording the conductance response 

in the presence of 19-norandrostenedione (19-NA) by a 

SiNW-FET with (blue line) or without (black line) the 

designed receptors [1]. 

 

 
Fig. 3. SEM by JEOL: device A shows a nanogap cavity at 

42nm using an in-testing pH sample [3]. 

 

 
(a) 

 
(b) 

Fig. 4. (a) Capacitance-Frequency relationship of 3, 5 and 

10 of different types of pH; (b) Capacitance-Voltage 

relationship of 3, 5 and 10 of different types of pH [3].  

 

 

 
Fig. 5. Enzymatic reactions of tyramine in the presence of 

tyrosinase [5]. 

 



 
Fig. 6. Cyclic voltammograms of the Ty-SWCNT-

COOH/SPE biosensor in the absence (dashed line) and 

presence of 100 microM tyramine (solid line) [5]. 

 
Fig. 7. The influence of the pH value in the biosensor 

response [5]. 

 
Fig. 8. Schematic illustration of the colloidal AuNPs-based 

electrochemical detection system [8]. 

 

 
Fig. 9. Cyclic voltammograms obtained upon analysing 

different concentrations of glucose [8]. 

 
Fig. 10. Relationship between the peak currents at -0.25 V 

and the concentrations of glucose. The inset shows a linear 

relationship in a concentration range from 0 mM to 100 

mM [8]. 

 
Fig. 11. The calibration curve of the cyclic voltammetric 

peak currents against the concentrations of the probe DNA 

[8]. 

 
Fig. 12. The principle of the cascade DNA-based 

electrochemical sensing system for Pb2+ detection [9]. 

 
Fig. 13. SWSV responses of the electrochemical sensing 

system for Pb2+ at various concentrations [9]. 



The authors in [8], [10] proposed the direct application 

of gold nanoparticle-based electrochemical biosensors to 

detect the concentration of glucose. In this biosensor, the 

colloidal AuNPs are adopted directly as the electrolyte, 

unlike in the conventional case which is only immobilized 

on the surface of the electrodes. Fig. 8 illustrates the 

colloidal AuNPs-based electrochemical detection system. 

The sensitive detection of the glucose is tested and the 

results are show in Fig. 9, which can  fitted by an equation: 

Y = 0.3633 + 0.00558X (R2 = 0.98), with a detection limit 

of 1 mM as show in Fig. 10. Another experiment have 

been done to show that single-nucleotide polymorphism 

can be detected using this device. The results are show in 

Fig. 11, which shows that a linear relationship between the 

current and the concentration of the target DNA is also 

obtained with a linear equation: Y = 2.0445 + 0.0897X (R2 

= 0.99). Hence, the results clearly show that the target 

DNA and the 1-base mismatched variant can be achieved 

for this device.  

 

The authors in [9], [11] proposed to develop an 

ultrasensitive electrochemical Pb2+ biosensor which 

cascades DNA and QDs. The sensitivity and selectivity 

was tested in the experiments. Fig. 12 illustrates the 

principle behind the device. In the absence of Pb2+, the 

substrate strand could not be cleaved. In contrast, in the 

presence of Pb2+, it is able to cleave the substrate strand 

into two DNA fragments at the ribonucleotide site. A free 

catalytic strand is released due to a lack of thermal 

stability. One terminus of the signal probe is hybridized 

with the free catalytic strand, while the other terminus 

hybridized with the linker probe. A long DNA concatemer 

containing numerous alternating signal probes and linker 

probes can be formed by continuous hybridization, and can 

also be assembled with numerous QDs. As a result, a 

remarkably amplified electrochemical signal can be 

obtained. Fig. 13 show a linear range was achieved 

from10.0 pM to 500.0 nM with a detection limit of 6.1 

pM. Based on the results, this shows that the sensor 

achieves a linearity relation for its current different from 

the Log concentration of Pb2+. 

 

Table 1: Summaries of Sensors 

Sensors [1], [2] [3], [4] [5]–[7] [8], [10] [9], [11] 

Nano 

structures 
Nanowire Nanogap 

Nanotu-

be 

Nanopartil-

ces 

Quantum 

dot 

Bio 

application 
19-NA pH 

Tyrami-

ne 
Glucose DNA 

Respond 
Conducta-

nce 

Capacita-

nce 
Current Current Current 

Input - 

Voltage 

and 

Frequency 

Voltage Voltage Voltage 

Relations Linear Linear Linear Linear Linear 

 

3.  SIGNAL ANALYSIS 

In this section, we will discuss several methods for 

how the sensor signal is to be processed. Four main signal 

changes due to the sensor reaction are discussed, namely 

amplitude, time, frequency and phase. The authors in [12] 

proposed a peak detection algorithm for portable multi-

model nano-biosensor system. The peak detection is an 

important step for signal processing applications. The 

author in [13] proposed auto-threshold peak detection 

which is suitable to apply with a micro-controller due to its 

simplicity. Fig. 15 illustrates the peak detection of the 

noise signal using the auto-threshold algorithm. This 

algorithm consists of two stages which are a threshold 

calculation stage and a peak detection stage. In the 

threshold calculation stage, the threshold value of the 

signal will be estimated with a terminated condition. In the 

peak detection stage, the peak detection will be performed 

using the threshold value calculated by the previous stage.  

 

The authors in [14] proposed a bio-signal processor 

platform using an SoC approach. In the bio-signal 

processing part, the raw bio-signal is filtered first to reduce 

the noise, before comparing it with reference bio-signal 

database (DB). Fig. 16 illustrates the ‘compare and accept’ 

method. As the measured signal is compared against the 

reference signal, the signal which has most similar 

properties to the reference signal is accepted. Using this 

method, and if we already have the aptamer disease data, 

we can detect the disease using this method. 

 

The authors in [15] proposed a time-frequency 

algorithm using a synchrosqueezing transform and the 

concept of joint instantaneous frequency multivariate 

data. The raw signal will be involved in modulation. The 

synchrosqueezing transform is used to produce time-

frequency representations of non-stationary signals. The 

instantaneous frequencies of the synchrosqueezed 

coefficients are determined for each oscillatory scale, and 

the resulting multivariate instantaneous frequency is then 

founded by calculating the joint instantaneous frequency 

of each oscillatory scale across the channels. The drift 

velocities along the latitude and longitude shown in Fig. 

17(a) contain a time-varying oscillation that is common to 

both channels; however, these oscillations are not in 

phase. The noise in both channels also had different 

characteristics. Fig. 17(b) illustrates that the common 

oscillatory dynamics of the float drift data that is 

frequency modulated are effectively localized using the 

proposed method, while the multivariate pseudo-Wigner 

distribution had poorer localization. 

 



Fig. 15. Peak detection results of the auto-threshold 

algorithm [12]. 

 
Fig. 16. The compare and accept method [14]. 

 

Fig. 17. Time-frequency analysis of real-world float drift 

data. (a) The time-domain w

aveforms of bivariate float-velocity data. (b) The time-

frequency representation of the float data using the 

proposed multivariate extension of the SST [15]. 

 
Fig. 18. Posterior probability transient. It can be seen that 

lim
n→∞

Pactive mode (n) = 1 for all possible active modes. 

Empirical measurements produced according to a possible 

mode of the system are used in the classification 

algorithm. [16] 

 
Fig. 19. Calculation steps of the AMPD algorithm [17]. 

 
Fig. 20. Results of applying the AMPD algorithm to an 

ECG time series [17]. 

 
Fig. 21. Synoptic scheme of a time-frequency-phase 

analyser with the three steps of the algorithm: short-time 



polynomial phase modelling, fusion, and component 

extraction [18]. 

The authors in [16] proposed the stochastic modelling 

and signal processing of nano-scale protein-based 

biosensors. With the presence of analyte in the electrolyte, 

the current or resistance of the device will change. The 

chemical dynamics of the biosensor’s response to the 

analyte concentration are modelled by a two-timescale 

nonlinear system of differential equations. The system 

used the Kalman filter in the multiple model adaptive 

estimation (MMAE) algorithm to estimate the 

concentration of the analyte, which classified the level of 

concentration as null, medium or high from the noisy 

measurement from the biosensor. Fig. 18 illustrates the 

response of the classification algorithm to empirical 

measurements of the channel conductance when the 

analyte and the binding site are, respectively, Streptavidin 

and Biotin. As shown, the algorithm performs well in 

detecting the active mode of the system when real data are 

used. In each of the subplots of Fig. 18, the channel 

conductance is evolving according to one of three 

possible regimes, depending on the analyte concentration. 

It can be seen that, as expected, the probability of each of 

the models except for the true model approaches 0, while 

the probability of the true model approaches 1. 

The authors in [17] proposed automatic multiscale-

based peak detection (AMPD) for a quasi-periodic and 

noisy periodic signal. The algorithm consists of 

calculating the local maxima scalogram (LMS), 

comprising a row-wise summation of the LMS matrix M, 

reshaping the LMS matrix M, and peak-detection. Fig. 19 

illustrates the calculation steps of the AMPD algorithm. 

The AMPD was applied in a few real-world signals, like 

sunspot numbers, the blood volume pulse in fNIRS 

signals, and QRS peaks in ECG signals. Fig. 20 illustrates 

the results of applying the AMPD algorithm to an ECG 

time series. The results show that all the R-peaks of the 

ECG signal are detected. Base on the results the authors 

find that the AMPD is available to use and test the 

algorithm in real-world applications.  

 

The authors in [18] proposed a time-frequency-phase 

tracker to analyse the underwater mammal vocalizations. 

This method consists of three steps, which are short-time 

analysis, selection and fusion, and component extraction. 

In the short-time analysis step, time windowing and a 

third-order windowed high-order ambiguity function 

(WHAF) is applied to the signal to reduce the dependence 

of polynomial modelling on the window size. In the 

selection and fusion step, frequency filtering and a fusion 

procedure is applied to the signal in order to extract the 

signal's samples corresponding to the time-frequency 

regions defined in the neighbourhood of the local 

functions. Next is the component extraction step – the 

remaining signal is fed back to the input of the first step. 

The process is repeated until all the components of interest 

have been extracted. Fig. 21 illustrates the synoptic 

scheme of the time-frequency-phase analyser. 

4.  DISCUSSIONS 

Table 2: Comparisons of signal analysis algorithms. 
Algorithms [12], [13] [14] [15] [16] [17] [18] 

Signal 

periodic 
None None None None 

periodic or 

quasi-

periodic 

None 

Analysis 

based 

time-

amplitude 
amplitude 

time-

frequency 
amplitude 

time-

amplitude 

time-

frequency-

phase 

Pre-process 

data 
NA filtering 

modulatio

n 

Kalman 

filter 

Window- 

moving 

time 

windowing, 

WHAF 

Signal 

analysis 

peak 

detection 
compare 

frequency 

detection 

multi-

hypothesis 

peak 

detection 

time-

frequency 

tracking 

Complexity simple simple complex complex complex complex 

 

In this section, we will discuss the suitability of each 

method presented in section 3 for use in an automatic 

nano-biosensor system. The bio-signal can be analysed 

based on the change in amplitude, phase, frequency or 

delay. The auto-threshold peak-detection proposed by [12] 

is simple and automatic. Hence, it is suitable to be applied 

to SoC. The compare and accept method proposed by [14] 

is suitable for application during the classification stage. 

The method proposed by [16] is only suitable for the 

specific sensor design, because the analyser is designed 

base on the specified chemical dynamics on the sensors. 

The AMPD proposed by Scholkmann [17] is not suitable 

for application in the automatic nano-biosensor analyser 

for analyses the amplitude of the signal due to it does not 

applicable to non-periodic signal. Based on the review, 

there are few kinds of response to electrical output from 

the sensor, namely amplitude, phase, time and frequencies. 

Hence, only the amplitude is analyses was not enough 

information to classified the bio signal. To obtain more 

accurate and useful information from the bio-signal, the 

phase-, frequency- and time-analysis must be implemented 

into the auto-threshold peak-detection. 

5.  CONCLUSIONS 

In this paper, five nanoscale biosensors were reviewed. 

Each sensor produces different wave signals due to the 

electrical characteristics. Most of the electrical signals can 

be classified based on the amplitudes, phases, frequencies 

and delays. Five signal analysers were also studied. Most 

research has focused on peak detection. To increase the 

accuracy of the analyser for the nano-biosensor, phase-, 

frequency- and delay-analysis must be implemented in the 

peak-detection analyser.  
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