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Performance Comparison of Automatic Peak 

Detection for Portable Signal Analyser 

 

  
Abstract—The aim of this paper is to discuss the automatic 

threshold peak detection method. An automatic threshold peak 

detection algorithm is simulated with a control signal in 

MATLAB to determine ability to detect different signal types. A 

comparison is made between automatic chromatographic peak 

detection, adaptive threshold detection, peak of Shannon energy 

envelop detection, and automatic multiscale peak detection. 

Based on the experiment results, automatic threshold peak 

detection can perform peak detection for sinusoidal or triangular 

signal but not pulse signal. Other algorithms can perform peak 

detection for pulse signal but not sinusoidal or triangular signal. 

Automatic threshold peak detection is about 4.47 times faster 

than peak of Shannon energy envelop and 3980 times faster than 

automatic multiscale peak detection; however, automatic 

threshold peak detection is about twice as slow as the adaptive 

threshold method and automatic chromatographic peak 

detection. 

Index Terms—Nano-biosensor, Biosensor signal anlysis.  

I. INTRODUCTION 

Nowadays, nano-biosensors are growing rapidly in 

importance, mainly in healthcare contexts. The most common 

biosensors are the glucose biosensor, sensor, cell-based 

biosensor, cardiomyocyte-based impedance sensor, and 

electrochemical impedance biosensor[1]–[5]. An efficiency 

algorithm is required to extract signal from biosensors to create 

a readable signal for users. Algorithms that have been studied 

include automatic threshold peak detection (ATPD), automatic 

chromatographic peak detection (ACPD), adaptive threshold 

detection (ATM), peak of Shannon energy envelop (PSEE), 

and automatic multiscale peak detection (AMPD)[6]–[11]. In 

our previous study, we proposed automatic threshold peak 

detection for portable nano-biosensor analysers due to its high 

accuracy and optimal computational speed. In the present work, 

the proposed method will be compared with other methods by 

simulation with a control signal. 

The rest of the paper is organized as follows. Section II 

elaborates the detail of the experiment set-up and the method of 

evaluating the performance of the algorithms. The results of 

our experiment are presented in Section III. Section IV will 

make a comparison between the proposed method and other 

existing methods. Finally, Section V provides conclusions. 

II. METHODOLOGY 

In this section, first we explained the experiment. Control 

signals are used to test the ability and accuracy of the 

algorithms under review. Eighteen control signals had 

generated, which consisting of three types of peak: pulse, 

sinusoidal, and triangular, as shown in Fig.1, Fig. 2, and Fig. 3, 

respectively. Each type of peak signal has a best, typical, and 

worst case. Fig. 1 shows the best case of the non-noise pulse 

peak signal; Fig. 4 shows the typical case, Fig. 5 the worst 

case, and Fig. 6 the best case. The same control signals are then 

combined with noise to test the performance of the algorithms. 

All control signals are generated using MATLAB and have a 

signal length of 30 seconds and a sampling frequency of 

640Hz. 

  
Fig. 1. Best case of non-noise pulse peak signal 

 
Fig. 2. Best case of non-noise sinusoidal peak signal 
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Fig. 3. Best case of non-noise triangular peak signal 

 

  
Fig. 4. Typical case of non-noise pulse peak signal 

 

 
Fig. 5. Worst case of non-noise pulse peak signal 

 
Fig. 6. Best case of noise pulse peak signal. 

 

Next, we explained the simulation set-up. The performance 

and accuracy of the algorithm are simulated in a MATLAB 

environment (MathWorks, USA) using a computer with Win8 

(64-bit) Intel®CoreTMi7 CPU (2.4 GHz, 8 G RAM). The 

simulation is carried out for 18control signals. The speed of 

each algorithm is obtained from the profiler feature in 

MATLAB. 

 

Lastly, we explained the method to evaluate algorithm 

performance. To evaluate the performance of each peak 

detection algorithm, we use three benchmark parameters: 

positive prediction (+P), sensitivity (SE), and detection error 

(DER). To calculate +P, SE, and DER, we include false 

negative (FN), which represents failure to detect a true peak 

(peak not detected as a peak), and false positive (FP), which 

means false peak detection (non-peak detected as a peak). 

Using FN and FP,+P, SE, and DER can be calculated as shown 

in Eqs. (1), (2), and (3), respectively, as suggested by[12]–[15]. 

 

FPTP
TPP


  (1) 

FNTP
TPSE


  (2) 

TPN
FNFPDER   (3) 

 

TP is the number of true positive detections (peak detected 

as a peak), and TPN is the total number of peaks in a signal. +P 

reports the percentage of peak detections that are true peaks. 

SE reports the percentage of true peaks that are correctly 

detected by the algorithm. DER reports the percentage of peak 

detection error. 

III. RESULT AND DISCUSSIONS 

In this section, we will discuss the experimental results. 

First, we will explain the results of the non-noise signal. The 

three types of peak control signal are used as the input of the 

simulation to test the performance of the ATPD algorithm. The 

results show that ATPD is not able to perform peak detection 

for pulse peak control signal in the non-stop simulation. Fig. 7 

shows the results of peak detection for best-case non-noise 

sinusoidal peak signal with ATPD. ATPD can achieve 100% 

positive prediction for all signals. ATPD achieves 100% error 

sensitivity for sinusoidal peak control signals in the best case, 

but for the typical case and worst case the sensitivity is 80% 

and 40%, respectively. ATPD achieved 100% sensitivity for 

triangular peak control signal in the best and typical case; 

however, for the worst case, the sensitivity was 60%.The total 

detection error for all non-noise signals was20%, with 100% 

positive prediction and 80% sensitivity. 

 

Next, we will explain the results for noise signal. The three 

types of peak control signal with noise are used as the  

simulation input to test the performance of ATPD. The results 

show ATPD is not able to perform peak detection on pulse 

peak control signal with non-stop simulation. Fig. 8 shows the 

results of peak detection for best-case noise sinusoidal peak 

signal using ATPD.ATPD achieved 100% positive prediction 
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for all signals. ATPD can achieve 100% sensitivity for 

sinusoidal peak control signal in the best case; however, the 

sensitivity for the typical case and worst case is 80% and 40%, 

respectively. ATPD achieved 100% sensitivity for triangular 

peak control signal in the best and typical case; however, the 

worst-case sensitivity was 60%.The total detection error for all 

noise signals was20%, with 100% positive prediction and 80% 

sensitivity. 

 

 
Fig. 7. Peak detection of best case non-noise sinusoidal 

peak signal using ATPD. 

 

Table 1. Performance table of ATPD for non-noise control 

signal. 

Signal  TPN TP FP FN Se% +P% DER% 

Pulse 

Best NA NA NA NA NA NA NA 

Typical NA NA NA NA NA NA NA 

Worst NA NA NA NA NA NA NA 

Sinusoidal 

Best 5 5 0 0 100.00% 100.00% 0.00% 

Typical 5 4 0 1 80.00% 100.00% 20.00% 

Worst 5 2 0 3 40.00% 100.00% 60.00% 

Triangular 

Best 5 5 0 0 100.00% 100.00% 0.00% 

Typical 5 5 0 0 100.00% 100.00% 0.00% 

Worst 5 3 0 2 60.00% 100.00% 40.00% 

Total 30 24 0 6 80.00% 100.00% 20.00% 

*NA refer to non-stop simulation. 

 

  
Fig. 8. Peak detection of best case noise sinusoidal peak 

signal using ATPD. 

Table 2. Performance of ATPD for noise control signal. 

Signal  TPN TP FP FN Se% +P% DER% 

Pulse 

Best NA NA NA NA NA NA NA 

Typical NA NA NA NA NA NA NA 

Worst NA NA NA NA NA NA NA 

Sinusoidal 

Best 5 5 0 0 100.00% 100.00% 0.00% 

Typical 5 4 0 1 80.00% 100.00% 20.00% 

Worst 5 2 0 3 40.00% 100.00% 60.00% 

Triangular 

Best 5 5 0 0 100.00% 100.00% 0.00% 

Typical 5 5 0 0 100.00% 100.00% 0.00% 

Worst 5 3 0 2 60.00% 100.00% 40.00% 

Total 30 24 0 6 80.00% 100.00% 20.00% 

*NA refer to non-stop simulation. 

The results for the non-noise and noise control signal show 

that ATPD can achieve the same accuracy with both. In neither 

case is ATPD able to detect peaks in the pulse peak control 

signal. In the simulation, the algorithm was still repeating the 

threshold calculation steps after five hours. 

Next, we will discuss the comparison between the ATPD 

algorithm and the other existing algorithms described in 

Section II, in terms of accuracy and speed. The results show 

that ATPD is able to perform peak detection for sinusoidal and 

triangular peak control signal, but not pulse peak control signal 

in non-stop simulation. PSEE, ATM, ACPD and AMPD are 

able to perform peak detection for all types of signal, but give 

very high detection error for sinusoidal and triangular signals– 

more than 50%. PSEE and ACPD use the gradient of the signal 

to detect the peak. In these two algorithms, a peak is defined 

when the positive and negative gradients are much greater than 

otherwise. For sinusoidal and triangular peaks, the gradient is 

always constant, so the peaks cannot be detected. With ATM, a 

peak is detected when there is a negative gradient greater than 

the slope of the algorithm. In sinusoidal and triangular peak 

control signal, the peak negative gradient is always smaller 

than the slope of the algorithm; therefore, peak detection 

cannot take place. AMPD uses window size to perform peak 

detection. Thus, in the noise pulse peak control signal, some 

noise is detected as peaks. For the sinusoidal and triangular 

peak control signal, the peaks occur at different times, and 

hence have different window sizes; peak detection therefore 

cannot take place. Table 3 summarizes the detection error for 

each method. Fig. 9, Fig. 10, Fig. 11, and Fig. 12 show the 

peak detection of best-case non-noise pulse peak signals using 

PSEE, ATM, ACPD, and AMPD, respectively. 

 

Table 3. Comparison of detection error. 

    
ATPD 

(%) 
PSEE 
(%) 

ATM 
(%) 

ACPD 
(%) 

AMPD 
(%) 

Non-

Noise 

Signal 

Pulse NA 40.00% 0.00% 40.00% 0.00% 

Sinusoidal 26.67% 140.00% 166.67% 100.00% 73.33% 

Triangular 13.33% 193.33% 73.33% 100.00% 66.67% 

Noise 

Signal 

Pulse NA 0.00% 0.00% 0.00% 140.00% 

Sinusoidal 26.67% 293.33% 206.67% 100.00% 66.67% 

Triangular 13.33% 333.33% 86.67% 100.00% 73.33% 

*NA refer to non-stop simulation. 
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Fig. 9. Peak detection for best case non-noise pulse peak 

signal using PSEE. 

  
Fig. 10. Peak detection for best case non-noise pulse peak 

signal using ATM. 

 
Fig. 11. Peak detection for best case non-noise pulse peak 

signal using ACPD. 

  
Fig. 12. Peak detection for best case non-noise pulse peak 

signal using AMPD. 

Table 4. Comparison of speed. 

  

ATPD 

(s) 

PSEE 

(s) 

ATM 

(s) 

ACPD 

(s) 

AMPD 

(s) 

Non-

Noise 
Signal 

Pulse NA 2.604 0.279 0.326 2397.588 

Sinusoidal 0.561 2.582 0.291 0.327 2359.904 

Triangular 0.581 2.476 0.294 0.328 2095.117 

Noise 

Signal 

Pulse NA 2.587 0.281 0.328 2368.870 

Sinusoidal 0.563 2.516 0.287 0.326 2077.474 

Triangular 0.562 2.450 0.287 0.335 2239.899 

 
average 0.567 2.536 0.287 0.328 2256.475 

 

Normalize 
of average 

to ATPD 

1.00 4.47 0.51 0.58 3979.67 

*NA refer to non-stop simulation. 

 

Table 4 summaries the computational speed of ATPD, 

PSEE, ATM, ACPD and AMPD. The average results show that 

ATM is the fastest algorithm and AMPD the slowest. ATM can 

perform detection in 0.287s;meanwhile, AMPD requires 

2256.475s. The second fastest algorithm is ACPD, followed by 

ATPD and PSEE, which need 0.328s, 0.567s, and 2.536 s, 

respectively. The comparison shows that ATPD is in the 

middle among the five algorithms in terms of speed. ATPD is 

about 4.47 times faster than PSEE and 3980 times faster than 

AMPD; however, ATPD is about twice as slow as ATM and 

ACPD. 

IV. CONCLUSIONS 

In this paper, the performance of a proposed ATPD 

algorithm has been discussed in detail. The performance has 

been evaluated using a benchmark method proposed by other 

researchers. The performance of the ATPD algorithm was 

compared to that of the PSEE, ATM, ACPD and AMPD 

algorithms. From the experimental results, ATPD can perform 

peak detection for sinusoidal and triangular types of signal, but 

not pulse signals. Meanwhile, other algorithms can perform 

peak detection for pulse but not sinusoidal or triangular signal. 

In terms of computational time, ATPD was 4.47 times faster 

than PSEE and 3980 times faster than AMPD, but twice as 

slow as ATM and ACPD. 
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