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Abstract—The aim of this paper is to discuss the automatic
threshold peak detection method. An automatic threshold peak
detection algorithm is simulated with a control signal in
MATLAB to determine ability to detect different signal types. A
comparison is made between automatic chromatographic peak
detection, adaptive threshold detection, peak of Shannon energy
envelop detection, and automatic multiscale peak detection.
Based on the experiment results, automatic threshold peak
detection can perform peak detection for sinusoidal or triangular
signal but not pulse signal. Other algorithms can perform peak
detection for pulse signal but not sinusoidal or triangular signal.
Automatic threshold peak detection is about 4.47 times faster
than peak of Shannon energy envelop and 3980 times faster than
automatic multiscale peak detection; however, automatic
threshold peak detection is about twice as slow as the adaptive

threshold method and automatic chromatographic peak
detection.
Index Terms—Nano-biosensor, Biosensor signal anlysis.
I. INTRODUCTION
Nowadays, nano-biosensors are growing rapidly in

importance, mainly in healthcare contexts. The most common
biosensors are the glucose biosensor, sensor, cell-based
biosensor, cardiomyocyte-based impedance sensor, and
electrochemical impedance biosensor[1]-[5]. An efficiency
algorithm is required to extract signal from biosensors to create
a readable signal for users. Algorithms that have been studied
include automatic threshold peak detection (ATPD), automatic
chromatographic peak detection (ACPD), adaptive threshold
detection (ATM), peak of Shannon energy envelop (PSEE),
and automatic multiscale peak detection (AMPD)[6]-[11]. In
our previous study, we proposed automatic threshold peak
detection for portable nano-biosensor analysers due to its high
accuracy and optimal computational speed. In the present work,
the proposed method will be compared with other methods by
simulation with a control signal.

The rest of the paper is organized as follows. Section Il
elaborates the detail of the experiment set-up and the method of
evaluating the performance of the algorithms. The results of
our experiment are presented in Section Ill. Section 1V will
make a comparison between the proposed method and other
existing methods. Finally, Section V provides conclusions.

Il. METHODOLOGY

In this section, first we explained the experiment. Control
signals are used to test the ability and accuracy of the
algorithms under review. Eighteen control signals had
generated, which consisting of three types of peak: pulse,
sinusoidal, and triangular, as shown in Fig.1, Fig. 2, and Fig. 3,
respectively. Each type of peak signal has a best, typical, and
worst case. Fig. 1 shows the best case of the non-noise pulse
peak signal; Fig. 4 shows the typical case, Fig. 5 the worst
case, and Fig. 6 the best case. The same control signals are then
combined with noise to test the performance of the algorithms.
All control signals are generated using MATLAB and have a
signal length of 30 seconds and a sampling frequency of
640Hz.
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Fig. 1. Best case of non-noise pulse peak signal
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Fig. 2. Best case of non-noise sinusoidal peak signal
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Fig. 3. Best case of non-noise triangular peak signal

Pulse Signal (Typical case)
120

100

80

60

40

20

[0}

o] 5 10 15 20 25 30

Fig. 4. Typical case of non-noise pulse peak signal

Pulse Signal (Worst case)
120

100

80

60

40

20

[0}

o] 5 10 15 20 25 30

Fig. 5. Worst case of non-noise pulse peak signal

Noise Pulse Signal (Best case)
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Fig. 6. Best case of noise pulse peak signal.

Next, we explained the simulation set-up. The performance
and accuracy of the algorithm are simulated in a MATLAB
environment (MathWorks, USA) using a computer with Win8
(64-bit) Intel®Core™i7 CPU (2.4 GHz, 8 G RAM). The
simulation is carried out for 18control signals. The speed of
each algorithm is obtained from the profiler feature in
MATLAB.

Lastly, we explained the method to evaluate algorithm
performance. To evaluate the performance of each peak
detection algorithm, we use three benchmark parameters:
positive prediction (+P), sensitivity (SE), and detection error
(DER). To calculate +P, SE, and DER, we include false
negative (FN), which represents failure to detect a true peak
(peak not detected as a peak), and false positive (FP), which
means false peak detection (non-peak detected as a peak).
Using FN and FP,+P, SE, and DER can be calculated as shown
in Egs. (1), (2), and (3), respectively, as suggested by[12]-[15].

+P =5 1
SE =y (2)
DER = =57+ 3)

TP is the number of true positive detections (peak detected
as a peak), and TPN is the total number of peaks in a signal. +P
reports the percentage of peak detections that are true peaks.
SE reports the percentage of true peaks that are correctly
detected by the algorithm. DER reports the percentage of peak
detection error.

I1l. RESULT AND DISCUSSIONS

In this section, we will discuss the experimental results.
First, we will explain the results of the non-noise signal. The
three types of peak control signal are used as the input of the
simulation to test the performance of the ATPD algorithm. The
results show that ATPD is not able to perform peak detection
for pulse peak control signal in the non-stop simulation. Fig. 7
shows the results of peak detection for best-case non-noise
sinusoidal peak signal with ATPD. ATPD can achieve 100%
positive prediction for all signals. ATPD achieves 100% error
sensitivity for sinusoidal peak control signals in the best case,
but for the typical case and worst case the sensitivity is 80%
and 40%, respectively. ATPD achieved 100% sensitivity for
triangular peak control signal in the best and typical case;
however, for the worst case, the sensitivity was 60%.The total
detection error for all non-noise signals was20%, with 100%
positive prediction and 80% sensitivity.

Next, we will explain the results for noise signal. The three
types of peak control signal with noise are used as the
simulation input to test the performance of ATPD. The results
show ATPD is not able to perform peak detection on pulse
peak control signal with non-stop simulation. Fig. 8 shows the
results of peak detection for best-case noise sinusoidal peak
signal using ATPD.ATPD achieved 100% positive prediction
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for all signals. ATPD can achieve 100% sensitivity for
sinusoidal peak control signal in the best case; however, the
sensitivity for the typical case and worst case is 80% and 40%,
respectively. ATPD achieved 100% sensitivity for triangular
peak control signal in the best and typical case; however, the
worst-case sensitivity was 60%.The total detection error for all
noise signals was20%, with 100% positive prediction and 80%
sensitivity.
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Fig. 7. Peak detection of best case non-noise sinusoidal
peak signal using ATPD.

Table 1. Performance table of ATPD for non-noise control
signal.

Signal [TPN| TP| FP| FN Se% +P%| DER%

Best| NA[NA|NA|NA NA NA NA
Pulse| Typical| NA|NA|NA|NA NA NA NA
Worst| NA|[NA|NA|NA NA NA NA

Best{ 5| 5| 0| 0]100.00% |100.00%| 0.00%

Sinusoidal | Typical 5| 4| 0| 1| 80.00%]100.00%|20.00%
Worst| 5| 2| 0| 3| 40.00% |100.00% |60.00%

Bestf 5| 5| 0| 0]100.00% |100.00% | 0.00%

Triangular | Typical 5| 5| 0| 0/100.00% |100.00%| 0.00%
Worst| 5| 3| 0| 2| 60.00% |100.00% |40.00%

Total| 30| 24| 0| 6| 80.00% |100.00% |20.00%

*NA refer to non-stop simulation.
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Fig. 8. Peak detection of best case noise sinusoidal peak
signal using ATPD.

Table 2. Performance of ATPD for noise control signal.
Signal | TPN| TP| FP| FN Se%| +P%| DER%

Best| NA|NA|NA|NA NA NA NA
Pulse | Typical| NA|NA|NA|NA NA NA NA
Worst| NA|NA|NA|NA NA NA NA

Best] 5| 5| 0| 0/100.00%|100.00%| 0.00%

Sinusoidal | Typical 5 4| 0| 1| 80.00%|100.00%|20.00%
Worst| 5| 2| 0| 3| 40.00% |100.00% |60.00%

Bestf 5| 5| 0| 0]/100.00%|100.00%| 0.00%

Triangular | Typical 5/ 5| 0| 0/100.00% 100.00%| 0.00%
Worst 5/ 3| 0| 2| 60.00%100.00% |40.00%

Total| 30| 24| 0| 6| 80.00% |100.00%|20.00%

*NA refer to non-stop simulation.

The results for the non-noise and noise control signal show
that ATPD can achieve the same accuracy with both. In neither
case is ATPD able to detect peaks in the pulse peak control
signal. In the simulation, the algorithm was still repeating the
threshold calculation steps after five hours.

Next, we will discuss the comparison between the ATPD
algorithm and the other existing algorithms described in
Section 11, in terms of accuracy and speed. The results show
that ATPD is able to perform peak detection for sinusoidal and
triangular peak control signal, but not pulse peak control signal
in non-stop simulation. PSEE, ATM, ACPD and AMPD are
able to perform peak detection for all types of signal, but give
very high detection error for sinusoidal and triangular signals—
more than 50%. PSEE and ACPD use the gradient of the signal
to detect the peak. In these two algorithms, a peak is defined
when the positive and negative gradients are much greater than
otherwise. For sinusoidal and triangular peaks, the gradient is
always constant, so the peaks cannot be detected. With ATM, a
peak is detected when there is a negative gradient greater than
the slope of the algorithm. In sinusoidal and triangular peak
control signal, the peak negative gradient is always smaller
than the slope of the algorithm; therefore, peak detection
cannot take place. AMPD uses window size to perform peak
detection. Thus, in the noise pulse peak control signal, some
noise is detected as peaks. For the sinusoidal and triangular
peak control signal, the peaks occur at different times, and
hence have different window sizes; peak detection therefore
cannot take place. Table 3 summarizes the detection error for
each method. Fig. 9, Fig. 10, Fig. 11, and Fig. 12 show the
peak detection of best-case non-noise pulse peak signals using
PSEE, ATM, ACPD, and AMPD, respectively.

Table 3. Comparison of detection error.

ATPD PSEE ATM ACPD | AMPD

(*0) (%) (%) (*0) (*0)
Non- | Pulse NA | 40.00% 0.00% | 40.00% 0.00%
Noise | Sinusoidal | 26.67% | 140.00% | 166.67% | 100.00% | 73.33%
Signal | Triangular | 13.33% | 193.33% | 73.33% | 100.00% | 66.67%
Noise Pulse NA 0.00% 0.00% 0.00% | 140.00%
Signal Sinusoidal | 26.67% | 293.33% | 206.67% | 100.00% | 66.67%
Triangular | 13.33% | 333.33% | 86.67% | 100.00% | 73.33%

*NA refer to non-stop simulation.
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Fig. 9. Peak detection for best case non-noise pulse peak
signal using PSEE.
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Fig. 10. Peak detection for best case non-noise pulse peak
signal using ATM.
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Fig. 11. Peak detection for best case non-noise pulse peak
signal using ACPD.

20 25 30

120

100

80

60

40

20

o

[0} 5 10 15 20 25 30

Fig. 12. Peak detection for best case non-noise pulse peak
signal using AMPD.

Table 4. Comparison of speed.

ATPD | PSEE | ATM | ACPD | AMPD
(s) (s) (s) (s) (s)
Non. |_Pulse NA | 2604 | 0279 | 0326 | 2397.588
Noise | Sinusoidal | 0561 | 2582 | 0291 | 0327 | 2359.904
Signal
N8 rriangular | 0581 | 2476 | 0204 | 0328 | 2095117
Pulse NA | 2587 | 0281 | 0.328 | 2368.870
Noise
Si(g)lnszg Sinusoidal | 0563 | 2516 | 0.287 | 0.326 | 2077.474
Triangular | 0562 | 2450 | 0287 | 0.335 | 2239.899
average | 0567 | 2536 | 0.287 | 0328 | 2256.475
Normalize
of average 1.00 4.47 0.51 0.58 3979.67
to ATPD

*NA refer to non-stop simulation.

Table 4 summaries the computational speed of ATPD,
PSEE, ATM, ACPD and AMPD. The average results show that
ATM is the fastest algorithm and AMPD the slowest. ATM can
perform detection in 0.287s;meanwhile, AMPD requires
2256.475s. The second fastest algorithm is ACPD, followed by
ATPD and PSEE, which need 0.328s, 0.567s, and 2.536 s,
respectively. The comparison shows that ATPD is in the
middle among the five algorithms in terms of speed. ATPD is
about 4.47 times faster than PSEE and 3980 times faster than

AMPD; however, ATPD is about twice as slow as ATM and
ACPD.

IV. CONCLUSIONS

In this paper, the performance of a proposed ATPD
algorithm has been discussed in detail. The performance has
been evaluated using a benchmark method proposed by other
researchers. The performance of the ATPD algorithm was
compared to that of the PSEE, ATM, ACPD and AMPD
algorithms. From the experimental results, ATPD can perform
peak detection for sinusoidal and triangular types of signal, but
not pulse signals. Meanwhile, other algorithms can perform
peak detection for pulse but not sinusoidal or triangular signal.
In terms of computational time, ATPD was 4.47 times faster

than PSEE and 3980 times faster than AMPD, but twice as
slow as ATM and ACPD.
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