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Abstract—A Hybrid Micro Genetic Algorithm (HMGA) is proposed for Pareto optimum search 

focusing on the Kursawe test function. HMGA is a fusion of the Micro Genetic Algorithm 

(MGA) and the elitism concept of Fast Pareto Genetic Algorithm (FPGA). The effectiveness of 

HMGA in Pareto optimal convergence was investigated with two performance indicators (i.e. 

Generational Distance (GD) and Spacing (SP)). To measure HMGA's performance, a 

comparison study was conducted between HMGA and MGA. In this work, HMGA outperformed 

MGA in the search for Pareto optimal front. 

Index Terms—Optimisation, Kursawe test function, ZDT test function, hybrid algorithm 

1. INTRODUCTION 

Multi-objective optimisation problems (MOPs) involve the simultaneous optimisation of two or 

more objectives. In real-world applications, conflicting objectives are often found in MOPs 

where the optimisation of one objective degrades the performance of another. In a practical 

consideration of all objectives, Pareto-based optimisers suggest a set of optimal solutions rather 

than a single one. The proposed solution set is known as the Pareto optimum set, which comprise 

the "trade-off" or "good" compromises among the objectives. The minimisation or maximisation 

of an MOP [1] is posed as a general non-linear programming as follows: 

 

Min or Max 

Subject to 
Inequality constraint 
Equality constraint 

𝑓𝑘(𝑥), 
 

 𝑔𝑚(𝑥) ≥ 0, 
ℎ𝑗(𝑥) = 0, 

𝑥𝑖
(𝐿) ≤ 𝑥𝑖 ≤ 𝑥𝑖

(𝑈), 

 
𝑛 = 1, … , 𝑁;

 
𝑚 = 1,… ,𝑀;
𝑗 = 1, … , 𝐽;
 𝑖 = 1,… , 𝐾; }

 
 

 
 

 (1) 

 

where 𝒙  represents the vector comprising decision variables 𝒙𝒊 . These decision variables are 

restricted to the feasible upper and lower bound limits given as 𝒙𝒊
(𝑳)

 and 𝒙𝒊
(𝑼)

 respectively. 𝒇𝒌(𝒙) is 

the 𝒌 𝒕𝒉 objective function, whereas  𝒈𝒎(𝒙)  and 𝒉𝒋(𝒙) represent the inequality and equality 
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constraints required for feasible solutions. When multiple objectives are involved, there is more 

than one objective function whereby k ≥ 2. Although these objectives are summed into a single 

objective problem (SOP) using the weighted-sum approach, this technique is more prone to the 

biases of weight vector and unit value implemented in each. To observe the optimum of each 

individual objective, researchers are focusing on the development of multi-objective evolutionary 

algorithms (MOEAs) based on the concept of Pareto dominance [2, 3]. 

 

2. BACKGROUND OF MOEAs 

MOP differs from SOP in that several objectives must be optimised simultaneously subject to 

acceptable performance ranges over all objectives [4]. Therefore, MOEAs are useful for finding 

"trade-off" or solution sets rather than single solutions [5]. Genetic Algorithm (GA), 

Evolutionary Strategies (ES), Genetic Programming (GP) and Evolutionary Programming (EP) 

are the four main evolutionary paradigms [6], each having a different focus area. For instance, 

GA is the original form of evolutionary computation, where the evolutionary operators are used 

to change and improve a population of solutions to a problem [7]. ES and GP are similar to GA, 

but the former focuses more on the mutation activity [8], whereas the latter extends the genetic 

forms using tree and graph expressions [9]. Unlike the other three paradigms, EP considers the 

interaction of species rather than individuals. 

In addition to the algorithms given above, heuristic algorithms, such as tabu search [10, 11], 

scatter search [12], swarm intelligence [13] and simulated annealing [14] are widely proposed to 

solve MOPs. The Niched-Pareto Genetic Algorithm (NPGA), Multi-Objective Genetic 

Algorithm (MOGA) and Non-dominated Sorting Genetic Algorithm (NSGA) are among the first 

generation MOEAs. 

NSGA [15], proposed by Srivinas and Deb, uses a layer-based classification suggested by 

Goldberg [3], sharing dummy fitness values among the layers of non-dominated individuals to 

maintain population diversity. The population is ranked before the selection is performed. 

However, repetitive Pareto ranking decreases the efficiency of NSGA. NPGA [16] uses a Pareto 

dominance scheme in the tournament selection. Comparison is performed on two randomly 

chosen individuals whereby the non-dominated individual is always selected in the tournament 

and fitness sharing decides the result of the tournament if there is a tie in the comparison. In 

MOGA [17], a rank-based fitness assignment method is implemented wherein rank values within 

the population guide the selection procedure. 

The second-generation MOEAs include the Strength Pareto Evolutionary Algorithm (SPEA), 

Pareto Archived Evolution Strategy (PAES), Non-dominated Sorting Genetic Algorithm II 

(NSGA-II) and Strength Pareto Evolutionary Algorithm 2 (SPEA2). 

SPEA [18] introduces an external population and preserves population diversity using a Pareto 

dominance relationship. The drawback of external population is the time-consuming search 

process and growing size of the external population. Thus, a pruning technique is applied to the 

external non-dominated population to maintain its size below a certain threshold. As for SPEA2 

[19], it is enhanced over SPEA in three ways: 1) individual domination using fine-grained fitness 

assignment, 2) more precise guidance in the search via nearest neighbour density estimation, and 

3) new archive truncation methods to preserve the boundary of the Pareto optimal set. 

In PAES [20], a single parent generates a single offspring using an elitism-based archive 

approach. A crowding procedure is applied to maintain diversity in the Pareto optimal set. 
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Although there are some similarities between PAES and MGA, the addition of population in 

PAES is computationally expensive. To address this issue, MGA uses replaceable and non-

replaceable memory to maintain population diversity [21]. 

NSGA-II [22] is an enhanced version of NSGA that uses elitism in (+λ) selection and a crowd 

comparison operator. Crowding distance is used to calculate the distance between the individual 

and its neighbour. NSGA-II prefers to select the non-dominated solution. If two solutions are in 

the same non-dominated rank, the less crowded region is preferred. 

2.1 Pareto Terminology 

 

The "good" result for MOPs is not a single solution but a set of solutions or "trade-offs" in the 

objective space [23]. Solutions proposed by the EA may not be the best or most satisfying due to 

incommensurability and the conflicting nature of the multiple objectives. Therefore, the Pareto 

concept was derived by researchers to determine and define the trade-off solutions in MOPs. 

Pareto dominance: Solution vector 𝑞 = (𝑞1, 𝑞2, … , 𝑞𝑎) is said to dominate another solution 

vector 𝑣 = (𝑣1, 𝑣2, … , 𝑣𝑎) if and only if 𝑞 is less than 𝑣 for minimisation. The mathematical form 

of Pareto dominance is shown in Equation (2) where 𝑖 is the number of vectors in solution space 

𝑎. 

 

∀𝑖 ∈ {1,… , 𝑎}, 𝑞𝑖 ≤ 𝑣𝑖∃𝑖 ∈ {1,… , 𝑎}: 𝑞𝑖 < 𝑣𝑖  (2) 
 

2.2 Research Aims 

In many real-world MOEA implementations, it can take minutes or hours to perform a single 

solution evaluation [24]. Some applications have potentially incommensurable ("black-box") 

objective functions that can increase computation complexity [25]. Therefore, it is often time 

consuming to run MOEAs for complicated problems. Few studies have applied the evolutionary 

algorithm to optimise and solve the real case problem in [26-28]. 

In this paper, we propose the HMGA, which is an extension of the MGA. The Kursawe test function [29] is 

used as the benchmark problem to evaluate the efficiency of the HMGA. The bootstrap method, which re-creates 

the relationship between the population and the sample by considering the sample as an epitome of the underlying 

population, is used to quantify the results. Therefore, the bootstrapped outcomes help us generalise our 

experimental results and project the stability of the proposed model. The results of the GD [30] and SP indicators 

[30] are compared with those of the MGA [21]. From the results, it is anticipated that our work will contribute 

towards formalizing an MOEA with better convergence capabilities in terms of GD and SP indicators while 

preserving the traditional MGA principles. 
 

3 KURSAWE MOP 

 

Kursawe's MOP, as proposed by [29], includes two objective functions. Equation (3) and (4) 

depict the formulation of the two objective functions f1(x) and f2(x). xi represents the decision 

variable in the i dimension, and the limitation of variable x is shown in (4). Many researchers 

have tested the Kursawe function as a research benchmark [24, 31-33]. The Kursawe test 

function's true Pareto front, 𝑷𝒕𝒓𝒖𝒆, is disconnected and asymmetric. The goal of optimisation is to 

assess the capability of MOEAs to approximate the true Pareto front of the Kursawe test function 

𝑷𝒕𝒓𝒖𝒆: 
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min𝑓1(𝑥) =  ∑(−10exp (−0.2√𝑥𝑖
2 + 𝑥𝑖+1

2 ))

𝑛−1

𝑖=1

 (3) 

min𝑓2(𝑥) =  ∑(|𝑥𝑖|
0.8 + 5𝑠𝑖𝑛𝑥𝑖

3)

𝑛

𝑖=1

 (4) 

𝑤ℎ𝑒𝑟𝑒 − 5 ≤ 𝑥𝑖 ≤ 5, ∀𝑖 = 1,2,3…𝑛 (5) 
 

4 MOEA INDICATORS 

4.1 Generational Distance 

In this experiment, the MOEA performance indicator known as GD [34-37] is proposed to 

determine how far the elements computed can approximate those in the optimal Pareto front. GD 

is defined as 

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  
√∑ 𝑑𝑖

2𝑗
𝑖=1

𝑗
. (6) 

Note that 𝒋 is the number of solu tions in the optimal set , and  𝒅𝒊 is the Euclidean d istance between each 

solu tion , with the nearest member in the optimal Pareto front. As a result, the GD with the value of zero 

indicates that the real optimal Pareto front has been reached. 

 

4.2 Spacing (SP) 

SP is a measurement of the vector spread throughout the non-dominated solutions found in the 

Pareto front [38, 39]. Since the Pareto front is found after optimisation, the SP metric is suitable 

to judge how well the non-dominated solutions are distributed along the front. Schott [40] 

proposed the SP metric to measure the distance variance of neighbouring solutions in the Pareto 

front as shown in (13). 

 

𝑆 ≜ √
1

𝑛−1
∑ (𝑑̅ − 𝑑𝑖)2
𝑛
𝑖=1   (7) 

 

where  𝒅𝒊 = 𝑚𝑖𝑛𝑗(|𝑓1
𝑖(𝑥) − 𝑓1

𝑗(𝑥)| + |𝑓2
𝑖(𝑥) − 𝑓2

𝑗(𝑥)|), 𝑖, 𝑗 = 1,… , 𝑛 , 𝒅̅ is the mean of all 𝒅𝒊 , 

and 𝒏  is the number of non-dominated solutions found so far. A value of zero for this SP 

indicates that all solutions in the Pareto front are spread evenly. 

 

5 HYBRID MICRO GENETIC ALGORITHM (HMGA) 

5.1 Crowding Distance 

Crowding distance (CDassignment) is used to assign fitness for the first-rank non-dominated 

solutions. The crowding-distance assignment calculates the distance of two solutions on either 

side of a particular solution relative to each objective. As a result, the densities of the solutions 

surrounding any solution in the population can be estimated. The higher the crowding-distance 
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value the less crowded the surrounding area of the solutions. 

 
j = |𝔗| 
for each i, set 𝔗[i] distance = 0 
for each objective m 
 𝔗 = sort (𝔗,m) 
 𝔗 [l]distance = 𝔗 [j]distance = ∞ 
 For i = 2 to (j-1) 
 𝔗 [i]distance = 𝔗 [i]distance + (𝔗 [i+1]. m – 𝔗 [i-1].m)∕( max min

m m
f f  ) 

Fig. 1. Crowding-distance pseudocode [22] 

 

Fig. 1 shows the pseudocode [22] for calculating the crowding distance whereby j is the total 

number of individuals in 𝔗 . First, the distance of each solution i of 𝔗  is initialized to zero. Then, 

solutions in 𝔗  are sorted according to each objective m. For boundary points, infinite distance is 

set so that boundary points are always selected. [i].m refers to the m
th

 objective function value of 

the i
th

 individual and the maximum and minimum values of the m
th

 objective function. 
After the crowding-distance assignment, the non-dominated solu tions are compared using d istance 

tournament selection to give higher priority to less crowded solu tions. Such action mainly aims to preserve the 

d iversity of the Pareto front by selecting solu tions with higher variation for the next generation when t he size 

of the archive that stores non-dominated solu tions exceeds the predefined size. 

 

5.2 Strength Fitness Assignment 

For each solution in the second rank, a comparison is conducted with all other solutions in the 

population, and fitness is assigned based on the solutions it dominates. The strength fitness 

(STassignment) concept from SPEA [19] is adopted to calculate the fitness for solutions in the 

second rank. Following the method proposed by [41], both dominated and dominating solutions 

are considered for each solution in the second rank. A net strength 𝑺(𝒙𝒊) that indicates the 

number of solutions dominated by 𝒙𝒊 is formulated as 

 

𝑆(𝑥𝑖) − |{𝑥𝑗|∀𝑥𝑗  ∈ 𝑃 ⋀𝑥𝑖 ≻ 𝑥𝑗⋀𝑗 ≠ 𝑖}|, (14) 

 

meaning that solution 𝒙𝒊 dominates solution 𝒙𝒋. 

From the net strength, each dominated solution in the second rank is assigned a fitness 𝑭(𝒙𝒊) 
as 

 

𝐹(𝑥𝑖) =  ∑ 𝑆(𝑥𝑗)

𝑥𝑖≻𝑥𝑗

− ∑ 𝑆(𝑥𝑘)

𝑥𝑘≻𝑥𝑖

, ∀𝑥𝑗 , 𝑥𝑘 ∈  𝑃𝑡⋀𝑗 ≠ 𝑖 ≠ 𝑘 (15) 

 

where 𝑭(𝒙𝒊) is equal to the subtraction of the total strength values of all solutions dominated by 

𝒙𝒊 and the total strength values of all solutions by which 𝒙𝒊 is dominated. 

By considering both dominating and dominated strengths, this approach preserves the diversity 

of the search wherein the chance of two solutions having the same fitness value is reduced. 

Therefore, three conditions are possible when solutions are compared: 

1) In the situation where the solutions are chosen from two different ranks, the better rank is 
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preferred. 

2) Two selected solutions differ in values, but in the same rank, the higher fitness value is 

preferred. 

3) If two selected solutions have the same fitness and rank values, one of them will be selected 

randomly with equal probability. 

By adopting the FPGA fitness assignments above, less computational time is required in the 

development of HMGA elitism because the strength fitness assignment only sets the fitness 

according to subtraction of the total dominating and dominated values of 𝒙𝒊. There is also no 

complexity in the diversity preservation in the fitness assignment because the crowding-distance 

operation helps maintain the diversity along the Pareto optimal front where it assigns higher 

priority to a less crowded region. 

 

5.3 Proposed HMGA 

The HMGA is created by integrating the MGA concept proposed by Coello et al. [21] as the base 

and combining it with the proposed elitism from Fig. 2, explaining more details of the 

pseudocode of the HMGA. 

By referring to the pseudocode in Fig. 2, a memory population P with size of N is randomly 

initialized and divided into two portion of memories (i.e. (1) replaceable memory rm and (2) 

non-replaceable memory irm). Candidate solutions in the replaceable memory rm are substituted 

when the replacement condition is satisfied during generation while the candidate solutions in 

the non-replaceable memory irm are kept to maintain diversity during the evolutionary search. A 

small population (size M between 3 and 5) is selected randomly from both sides of the memories 

to represent an initial population PP. Genetic operators (selection, crossover, mutation) are 

applied to form a new generation PPN comprising the offspring after crossover and mutation and 

one elite from the PP. The insertion of one elite solution elit into the PPN preserves some 

information before the genetic reproduction. All the candidate solutions in PPN are now 

evaluated with HMGA elitism. During the first implementation of HMGA elitism, the external 

archive y is empty. 

Therefore, the solutions are evaluated for Pareto ranking where non-dominated solutions are 

categorised in the first-rank and dominated solutions are grouped under the second rank. The 

first-rank solutions are then evaluated based on crowding distance (CDassignment), whereas the 

second-rank solutions are assessed based on strength assignment (STassignment). From the 

fitness, M number of elite solutions based on the priority of comparison in (STassignment) are 

taken as the parent solutions for the repetitive loop of genetic operations (selection, crossover, 

mutation), the creation of PPN and the HMGA elitism until nominal convergence is reached. The 

nominal convergence in this research is used to fix the number of evolutions. After nominal 

convergence is satisfied, two elite solutions (elit) are inserted into archive y and used to replace 

two contenders sequentially taken from the replaceable memory irm. As mentioned, this 

evolution is repeated until the condition for the overall replacement cycle is achieved. When the 

evolutionary cycle reaches the overall replacement cycle, all the collected elite solutions in 

archive y replace all the solutions in the replaceable memory rm. This provides a more intuitive 

search direction towards the evolution, as there is better chance that candidates from the best 

elite solutions will be selected for evolution in the next generation. After replacing all solutions 

in the replaceable memory, the HMGA elitism is again conducted until the termination criterion 
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is met. In this research, the termination criterion refers to the maximum evolutionary cycle 

predetermined in the experiment. The maximum evolutionary cycle is fixed based on the cycle of 

convergence observed from a number of experiments. 

In this research, the proposed HMGA model explained above is applied to the Kursawe test 

function. The populations of candidate solutions are generated according to the specific range 

and constraints of the test function. These solutions are then separated into replaceable and non-

replaceable memory and optimised using the HMGA flow as given in Fig. 3. As multiple 

objectives are involved in these two studies, the value obtained for each objective is calculated 

based on the equations given in previous sections for the Kursawe test functions. The 

achievement of each objective is then used to categorise the solution as non-dominated (first-

rank) or dominated (second-rank). Then, the evolution of optimisation is conducted using the 

proposed HMGA model in which the HMGA elitism is incorporated to evaluate the fitness of 

each solution. To match and compare with [21], the maximum iteration cycle is used as the 

termination criterion. The results of these benchmark studies based on the evaluation of our 

HMGA model are discussed in the next section. 
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Fig. 2. Pseudocode of proposed HMGA 

Initialize parameter setting 

t = 0 

create initial random population P with size N. 

P is separated into two portion rm and irm by 

ratio 

i = 0 

while i < maxevaluation do 

  begin  
Get initial population PP from  P with size M 

  repeat 

    begin 

    S  =  selection (PP) 

    C  =  crossover (S) 

    M  =  mutation (C) 

    Keep one elit from PP into M 

    Next generation PPN  =  M 

  end 

until nominal convergence is reached 

Copy two non-dominated solutions (elit) from 

PPN to archive 

if archive is reached archivesize when trying to 

insert elit 

  then adaptive grid (elit) 

end if 

Copy two elits from PPN to rm  

if i mod replacement cycle  

  then replace all rm memory with archive until 

rm is full 

end if 

i  =  i + 1 

end while 
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Fig. 3. Proposed HMGA flow chart 

 

 

6 RESULTS AND DISCUSSION 

In this study, the experimental settings for the proposed HMGA are most similar to the MGA 

model in [21]. Table I shows the settings of evolutionary parameters in the HMGA and MGA 

models. 

In Table I, the first column shows the parameters of the Kursawe function experiment and the 

second and third columns present the setting values for the MGA and HMGA respectively. The 

only setting difference is in elite size, as the MGA uses elite size 3 and our proposed HMGA uses 

elite size 2. The elite size is reduced to decrease computational complexity. As shown in Table I 

and the HMGA mechanism, the optimisation process begins with memory size 50, external 

memory size 100 and population size 4 for the evolution before reaching nominal convergence. 

The ratio of replaceable memory is 70%, and the crossover probability is 0.8 for both algorithms. 

Binary tournament selection is used as the selection method. The overall replacement cycle is 

activated every 25 evolutions such that all solutions in the replaceable memory are replaced with 
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the solutions stored in archive y. Two performance indicators (GD and SP) are used in this 

experiment. 

 

 

TABLE I 

MGA and HMGA Parameter Settings for Kursawe Test Function 

Parameter of Kursawe Function 

Experiment 
MGA value [21] HMGA value 

Population Size, M 4 4 

Maximum Iteration 12000 12000 

Memory Size, N 50 50 

Ratio of Replaceable Memory 70% 70% 

External Memory Size 100 100 

Bi-sections for Adaptive Grid 5 5 

Nominal Convergence 2 2 

Probability of Two-Point 

Crossover 
0.8 0.8 

Probability of Uniform Mutation 𝑥=1 𝑥=1 

Perturbation Index of Uniform 

Mutation 
1 1 

Selection Method Binary Tournament Binary Tournament 

Replacement Cycle 25 25 

Elite Size 3 2 

MOEA Indicator GD, SP GD, SP 

 

One-hundred experiments have been conducted on the Kursawe test function to evaluate the 

performance of the proposed HMGA. To achieve a more comprehensive comparison between the 

HMGA and MGA, the best, worst, mean, median and standard deviation values obtained from 

the performance indicators are included in the analysis. As mentioned in section 4, the smaller 

the GD value the closer the result to the optimum. Table II presents the comparison between the 

MGA and HMGA in terms of GD. The MGA result reported in [21] is presented in Table II 

where the best, worst, mean, median and standard deviation values are reported as 0.00680344, 

0.0103437, 0.008456311, 0.008489235 and 0.00098659, respectively. The statistical values for 

HMGA in Table II are calculated based on the accumulated results of 100 experiments (Table I). 

The statistical bound of the HMGA with the best and worst GD (ranging 0.00032050–

0.00128554) are lower than the reported MGA's best GD (0.00680344). Thus, the HMGA shows 

better performance than the MGA in terms of GD. The HMGA has a mean 94%-increment 

advantage over the MGA, which indicates a more effective search mechanism. 
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TABLE II 

Generational Distance 

GD MGA [21] HMGA 

Best 0.00680344 0.00032050 

Worst 0.0103437 0.00128554 

Mean 0.008456311 0.00054287 

Median 0.008489235 0.00051027 

Standard 

Deviation 
0.00098659 0.00015325 

 

 

TABLE III 

Spacing (SP) 

SP MGA [21] HMGA 

Best 0.0716859 0.01355709 

Worst 0.203127 0.03337811 

Mean 0.12889499 0.02138230 

Median 0.126655 0.02130097 

Standard 

Deviation 
0.02993154 0.00283567 

 

The Kursawe test function-indicator analysis for SP was also carried out on both the MGA and 

HMGA (Table III). Importantly, the statistical bound of MGA fluctuates significantly, ranging 

0.203127–0.0716859, whereas the more stable SP values for the HMGA range 0.03337811–

0.01355709. There is no dramatic difference between the best and worst SP values, and the 

standard deviation of the HMGA is comparatively smaller than that of the MGA. Therefore, the 

HMGA's performance throughout the 100 conducted experiments is consistent. Observations 

from the SP values prove that the HMGA results distribute more evenly compared to the results 

of the MGA. 

 

 

7 CONCLUSION 

The experiment results for the Kursawe test function indicate that the HMGA directs the search 

towards the Pareto optimal front effectively. Two indicators (GD and SP) are used to evaluate the 

performance of the HMGA in Kursawe test function. The results show that the HMGA 

outperforms the MGA and overcomes the difficulties in the test function. The crowding-distance 

selection used in the HMGA is most likely a main factor in the HGMA's more even distribution 

of solutions along the Pareto optimal front. The HMGA is a potential evolutionary algorithm for 

MOPs. 
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