
Soft Computing, July 2015

http://link.springer.com/article/10.1007/s00500-015-1767-5 1
DOI 10.1007/s00500-015-1767-5

Kursawe Function Optimisation using Hybrid

Micro Genetic Algorithm (HMGA)
Lim Wei Jer

1
, Asral Bahari Jambek

1
, and Neoh Siew Chin

2

1
School of Microelectronic Engineering,

Universiti Malaysia Perlis,

Kampus Alam, Pauh Putra, 02600 Pauh, Perlis, Malaysia
2
Computational Intelligence Research Group,

Department of Computing Science and Digital Technologies,

Faculty of Engineering and Environment,

University of Northumbria, Newcastle, NE1 8ST, UK

limweijer1987@gmail.com, asral@unimap.edu.my, siew.neoh@northumbria.ac.uk

Abstract—A Hybrid Micro Genetic Algorithm (HMGA) is proposed for Pareto optimum search

focusing on the Kursawe test function. HMGA is a fusion of the Micro Genetic Algorithm

(MGA) and the elitism concept of Fast Pareto Genetic Algorithm (FPGA). The effectiveness of

HMGA in Pareto optimal convergence was investigated with two performance indicators (i.e.

Generational Distance (GD) and Spacing (SP)). To measure HMGA's performance, a

comparison study was conducted between HMGA and MGA. In this work, HMGA outperformed

MGA in the search for Pareto optimal front.

Index Terms—Optimisation, Kursawe test function, ZDT test function, hybrid algorithm

1. INTRODUCTION

Multi-objective optimisation problems (MOPs) involve the simultaneous optimisation of two or

more objectives. In real-world applications, conflicting objectives are often found in MOPs

where the optimisation of one objective degrades the performance of another. In a practical

consideration of all objectives, Pareto-based optimisers suggest a set of optimal solutions rather

than a single one. The proposed solution set is known as the Pareto optimum set, which comprise

the "trade-off" or "good" compromises among the objectives. The minimisation or maximisation

of an MOP [1] is posed as a general non-linear programming as follows:

Min or Max

Subject to
Inequality constraint
Equality constraint

𝑓𝑘(𝑥),

 𝑔𝑚(𝑥) ≥ 0,
ℎ𝑗(𝑥) = 0,

𝑥𝑖
(𝐿) ≤ 𝑥𝑖 ≤ 𝑥𝑖

(𝑈),

𝑛 = 1, … , 𝑁;

𝑚 = 1,… ,𝑀;
𝑗 = 1, … , 𝐽;
 𝑖 = 1,… , 𝐾; }

 (1)

where 𝒙 represents the vector comprising decision variables 𝒙𝒊 . These decision variables are

restricted to the feasible upper and lower bound limits given as 𝒙𝒊
(𝑳)

 and 𝒙𝒊
(𝑼)

 respectively. 𝒇𝒌(𝒙) is

the 𝒌 𝒕𝒉 objective function, whereas 𝒈𝒎(𝒙) and 𝒉𝒋(𝒙) represent the inequality and equality

mailto:asral@unimap.edu.my

Soft Computing, July 2015

http://link.springer.com/article/10.1007/s00500-015-1767-5 2
DOI 10.1007/s00500-015-1767-5

constraints required for feasible solutions. When multiple objectives are involved, there is more

than one objective function whereby k ≥ 2. Although these objectives are summed into a single

objective problem (SOP) using the weighted-sum approach, this technique is more prone to the

biases of weight vector and unit value implemented in each. To observe the optimum of each

individual objective, researchers are focusing on the development of multi-objective evolutionary

algorithms (MOEAs) based on the concept of Pareto dominance [2, 3].

2. BACKGROUND OF MOEAs

MOP differs from SOP in that several objectives must be optimised simultaneously subject to

acceptable performance ranges over all objectives [4]. Therefore, MOEAs are useful for finding

"trade-off" or solution sets rather than single solutions [5]. Genetic Algorithm (GA),

Evolutionary Strategies (ES), Genetic Programming (GP) and Evolutionary Programming (EP)

are the four main evolutionary paradigms [6], each having a different focus area. For instance,

GA is the original form of evolutionary computation, where the evolutionary operators are used

to change and improve a population of solutions to a problem [7]. ES and GP are similar to GA,

but the former focuses more on the mutation activity [8], whereas the latter extends the genetic

forms using tree and graph expressions [9]. Unlike the other three paradigms, EP considers the

interaction of species rather than individuals.

In addition to the algorithms given above, heuristic algorithms, such as tabu search [10, 11],

scatter search [12], swarm intelligence [13] and simulated annealing [14] are widely proposed to

solve MOPs. The Niched-Pareto Genetic Algorithm (NPGA), Multi-Objective Genetic

Algorithm (MOGA) and Non-dominated Sorting Genetic Algorithm (NSGA) are among the first

generation MOEAs.

NSGA [15], proposed by Srivinas and Deb, uses a layer-based classification suggested by

Goldberg [3], sharing dummy fitness values among the layers of non-dominated individuals to

maintain population diversity. The population is ranked before the selection is performed.

However, repetitive Pareto ranking decreases the efficiency of NSGA. NPGA [16] uses a Pareto

dominance scheme in the tournament selection. Comparison is performed on two randomly

chosen individuals whereby the non-dominated individual is always selected in the tournament

and fitness sharing decides the result of the tournament if there is a tie in the comparison. In

MOGA [17], a rank-based fitness assignment method is implemented wherein rank values within

the population guide the selection procedure.

The second-generation MOEAs include the Strength Pareto Evolutionary Algorithm (SPEA),

Pareto Archived Evolution Strategy (PAES), Non-dominated Sorting Genetic Algorithm II

(NSGA-II) and Strength Pareto Evolutionary Algorithm 2 (SPEA2).

SPEA [18] introduces an external population and preserves population diversity using a Pareto

dominance relationship. The drawback of external population is the time-consuming search

process and growing size of the external population. Thus, a pruning technique is applied to the

external non-dominated population to maintain its size below a certain threshold. As for SPEA2

[19], it is enhanced over SPEA in three ways: 1) individual domination using fine-grained fitness

assignment, 2) more precise guidance in the search via nearest neighbour density estimation, and

3) new archive truncation methods to preserve the boundary of the Pareto optimal set.

In PAES [20], a single parent generates a single offspring using an elitism-based archive

approach. A crowding procedure is applied to maintain diversity in the Pareto optimal set.

Soft Computing, July 2015

http://link.springer.com/article/10.1007/s00500-015-1767-5 3
DOI 10.1007/s00500-015-1767-5

Although there are some similarities between PAES and MGA, the addition of population in

PAES is computationally expensive. To address this issue, MGA uses replaceable and non-

replaceable memory to maintain population diversity [21].

NSGA-II [22] is an enhanced version of NSGA that uses elitism in (+λ) selection and a crowd

comparison operator. Crowding distance is used to calculate the distance between the individual

and its neighbour. NSGA-II prefers to select the non-dominated solution. If two solutions are in

the same non-dominated rank, the less crowded region is preferred.

2.1 Pareto Terminology

The "good" result for MOPs is not a single solution but a set of solutions or "trade-offs" in the

objective space [23]. Solutions proposed by the EA may not be the best or most satisfying due to

incommensurability and the conflicting nature of the multiple objectives. Therefore, the Pareto

concept was derived by researchers to determine and define the trade-off solutions in MOPs.

Pareto dominance: Solution vector 𝑞 = (𝑞1, 𝑞2, … , 𝑞𝑎) is said to dominate another solution

vector 𝑣 = (𝑣1, 𝑣2, … , 𝑣𝑎) if and only if 𝑞 is less than 𝑣 for minimisation. The mathematical form

of Pareto dominance is shown in Equation (2) where 𝑖 is the number of vectors in solution space

𝑎.

∀𝑖 ∈ {1,… , 𝑎}, 𝑞𝑖 ≤ 𝑣𝑖∃𝑖 ∈ {1,… , 𝑎}: 𝑞𝑖 < 𝑣𝑖 (2)

2.2 Research Aims

In many real-world MOEA implementations, it can take minutes or hours to perform a single

solution evaluation [24]. Some applications have potentially incommensurable ("black-box")

objective functions that can increase computation complexity [25]. Therefore, it is often time

consuming to run MOEAs for complicated problems. Few studies have applied the evolutionary

algorithm to optimise and solve the real case problem in [26-28].

In this paper, we propose the HMGA, which is an extension of the MGA. The Kursawe test function [29] is

used as the benchmark problem to evaluate the efficiency of the HMGA. The bootstrap method, which re-creates

the relationship between the population and the sample by considering the sample as an epitome of the underlying

population, is used to quantify the results. Therefore, the bootstrapped outcomes help us generalise our

experimental results and project the stability of the proposed model. The results of the GD [30] and SP indicators

[30] are compared with those of the MGA [21]. From the results, it is anticipated that our work will contribute

towards formalizing an MOEA with better convergence capabilities in terms of GD and SP indicators while

preserving the traditional MGA principles.

3 KURSAWE MOP

Kursawe's MOP, as proposed by [29], includes two objective functions. Equation (3) and (4)

depict the formulation of the two objective functions f1(x) and f2(x). xi represents the decision

variable in the i dimension, and the limitation of variable x is shown in (4). Many researchers

have tested the Kursawe function as a research benchmark [24, 31-33]. The Kursawe test

function's true Pareto front, 𝑷𝒕𝒓𝒖𝒆, is disconnected and asymmetric. The goal of optimisation is to

assess the capability of MOEAs to approximate the true Pareto front of the Kursawe test function

𝑷𝒕𝒓𝒖𝒆:

Soft Computing, July 2015

http://link.springer.com/article/10.1007/s00500-015-1767-5 4
DOI 10.1007/s00500-015-1767-5

min𝑓1(𝑥) = ∑(−10exp (−0.2√𝑥𝑖
2 + 𝑥𝑖+1

2))

𝑛−1

𝑖=1

 (3)

min𝑓2(𝑥) = ∑(|𝑥𝑖|
0.8 + 5𝑠𝑖𝑛𝑥𝑖

3)

𝑛

𝑖=1

 (4)

𝑤ℎ𝑒𝑟𝑒 − 5 ≤ 𝑥𝑖 ≤ 5, ∀𝑖 = 1,2,3…𝑛 (5)

4 MOEA INDICATORS

4.1 Generational Distance

In this experiment, the MOEA performance indicator known as GD [34-37] is proposed to

determine how far the elements computed can approximate those in the optimal Pareto front. GD

is defined as

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
√∑ 𝑑𝑖

2𝑗
𝑖=1

𝑗
. (6)

Note that 𝒋 is the number of solu tions in the optimal set , and 𝒅𝒊 is the Euclidean d istance between each

solu tion , with the nearest member in the optimal Pareto front. As a result, the GD with the value of zero

indicates that the real optimal Pareto front has been reached.

4.2 Spacing (SP)

SP is a measurement of the vector spread throughout the non-dominated solutions found in the

Pareto front [38, 39]. Since the Pareto front is found after optimisation, the SP metric is suitable

to judge how well the non-dominated solutions are distributed along the front. Schott [40]

proposed the SP metric to measure the distance variance of neighbouring solutions in the Pareto

front as shown in (13).

𝑆 ≜ √
1

𝑛−1
∑ (𝑑̅ − 𝑑𝑖)2
𝑛
𝑖=1 (7)

where 𝒅𝒊 = 𝑚𝑖𝑛𝑗(|𝑓1
𝑖(𝑥) − 𝑓1

𝑗(𝑥)| + |𝑓2
𝑖(𝑥) − 𝑓2

𝑗(𝑥)|), 𝑖, 𝑗 = 1,… , 𝑛 , 𝒅̅ is the mean of all 𝒅𝒊 ,

and 𝒏 is the number of non-dominated solutions found so far. A value of zero for this SP

indicates that all solutions in the Pareto front are spread evenly.

5 HYBRID MICRO GENETIC ALGORITHM (HMGA)

5.1 Crowding Distance

Crowding distance (CDassignment) is used to assign fitness for the first-rank non-dominated

solutions. The crowding-distance assignment calculates the distance of two solutions on either

side of a particular solution relative to each objective. As a result, the densities of the solutions

surrounding any solution in the population can be estimated. The higher the crowding-distance

Soft Computing, July 2015

http://link.springer.com/article/10.1007/s00500-015-1767-5 5
DOI 10.1007/s00500-015-1767-5

value the less crowded the surrounding area of the solutions.

j = |𝔗|
for each i, set 𝔗[i] distance = 0
for each objective m
 𝔗 = sort (𝔗,m)
 𝔗 [l]distance = 𝔗 [j]distance = ∞
 For i = 2 to (j-1)
 𝔗 [i]distance = 𝔗 [i]distance + (𝔗 [i+1]. m – 𝔗 [i-1].m)∕(max min

m m
f f)

Fig. 1. Crowding-distance pseudocode [22]

Fig. 1 shows the pseudocode [22] for calculating the crowding distance whereby j is the total

number of individuals in 𝔗 . First, the distance of each solution i of 𝔗 is initialized to zero. Then,

solutions in 𝔗 are sorted according to each objective m. For boundary points, infinite distance is

set so that boundary points are always selected. [i].m refers to the m
th

 objective function value of

the i
th

 individual and the maximum and minimum values of the m
th

 objective function.
After the crowding-distance assignment, the non-dominated solu tions are compared using d istance

tournament selection to give higher priority to less crowded solu tions. Such action mainly aims to preserve the

d iversity of the Pareto front by selecting solu tions with higher variation for the next generation when t he size

of the archive that stores non-dominated solu tions exceeds the predefined size.

5.2 Strength Fitness Assignment

For each solution in the second rank, a comparison is conducted with all other solutions in the

population, and fitness is assigned based on the solutions it dominates. The strength fitness

(STassignment) concept from SPEA [19] is adopted to calculate the fitness for solutions in the

second rank. Following the method proposed by [41], both dominated and dominating solutions

are considered for each solution in the second rank. A net strength 𝑺(𝒙𝒊) that indicates the

number of solutions dominated by 𝒙𝒊 is formulated as

𝑆(𝑥𝑖) − |{𝑥𝑗|∀𝑥𝑗 ∈ 𝑃 ⋀𝑥𝑖 ≻ 𝑥𝑗⋀𝑗 ≠ 𝑖}|, (14)

meaning that solution 𝒙𝒊 dominates solution 𝒙𝒋.

From the net strength, each dominated solution in the second rank is assigned a fitness 𝑭(𝒙𝒊)
as

𝐹(𝑥𝑖) = ∑ 𝑆(𝑥𝑗)

𝑥𝑖≻𝑥𝑗

− ∑ 𝑆(𝑥𝑘)

𝑥𝑘≻𝑥𝑖

, ∀𝑥𝑗 , 𝑥𝑘 ∈ 𝑃𝑡⋀𝑗 ≠ 𝑖 ≠ 𝑘 (15)

where 𝑭(𝒙𝒊) is equal to the subtraction of the total strength values of all solutions dominated by

𝒙𝒊 and the total strength values of all solutions by which 𝒙𝒊 is dominated.

By considering both dominating and dominated strengths, this approach preserves the diversity

of the search wherein the chance of two solutions having the same fitness value is reduced.

Therefore, three conditions are possible when solutions are compared:

1) In the situation where the solutions are chosen from two different ranks, the better rank is

Soft Computing, July 2015

http://link.springer.com/article/10.1007/s00500-015-1767-5 6
DOI 10.1007/s00500-015-1767-5

preferred.

2) Two selected solutions differ in values, but in the same rank, the higher fitness value is

preferred.

3) If two selected solutions have the same fitness and rank values, one of them will be selected

randomly with equal probability.

By adopting the FPGA fitness assignments above, less computational time is required in the

development of HMGA elitism because the strength fitness assignment only sets the fitness

according to subtraction of the total dominating and dominated values of 𝒙𝒊. There is also no

complexity in the diversity preservation in the fitness assignment because the crowding-distance

operation helps maintain the diversity along the Pareto optimal front where it assigns higher

priority to a less crowded region.

5.3 Proposed HMGA

The HMGA is created by integrating the MGA concept proposed by Coello et al. [21] as the base

and combining it with the proposed elitism from Fig. 2, explaining more details of the

pseudocode of the HMGA.

By referring to the pseudocode in Fig. 2, a memory population P with size of N is randomly

initialized and divided into two portion of memories (i.e. (1) replaceable memory rm and (2)

non-replaceable memory irm). Candidate solutions in the replaceable memory rm are substituted

when the replacement condition is satisfied during generation while the candidate solutions in

the non-replaceable memory irm are kept to maintain diversity during the evolutionary search. A

small population (size M between 3 and 5) is selected randomly from both sides of the memories

to represent an initial population PP. Genetic operators (selection, crossover, mutation) are

applied to form a new generation PPN comprising the offspring after crossover and mutation and

one elite from the PP. The insertion of one elite solution elit into the PPN preserves some

information before the genetic reproduction. All the candidate solutions in PPN are now

evaluated with HMGA elitism. During the first implementation of HMGA elitism, the external

archive y is empty.

Therefore, the solutions are evaluated for Pareto ranking where non-dominated solutions are

categorised in the first-rank and dominated solutions are grouped under the second rank. The

first-rank solutions are then evaluated based on crowding distance (CDassignment), whereas the

second-rank solutions are assessed based on strength assignment (STassignment). From the

fitness, M number of elite solutions based on the priority of comparison in (STassignment) are

taken as the parent solutions for the repetitive loop of genetic operations (selection, crossover,

mutation), the creation of PPN and the HMGA elitism until nominal convergence is reached. The

nominal convergence in this research is used to fix the number of evolutions. After nominal

convergence is satisfied, two elite solutions (elit) are inserted into archive y and used to replace

two contenders sequentially taken from the replaceable memory irm. As mentioned, this

evolution is repeated until the condition for the overall replacement cycle is achieved. When the

evolutionary cycle reaches the overall replacement cycle, all the collected elite solutions in

archive y replace all the solutions in the replaceable memory rm. This provides a more intuitive

search direction towards the evolution, as there is better chance that candidates from the best

elite solutions will be selected for evolution in the next generation. After replacing all solutions

in the replaceable memory, the HMGA elitism is again conducted until the termination criterion

Soft Computing, July 2015

http://link.springer.com/article/10.1007/s00500-015-1767-5 7
DOI 10.1007/s00500-015-1767-5

is met. In this research, the termination criterion refers to the maximum evolutionary cycle

predetermined in the experiment. The maximum evolutionary cycle is fixed based on the cycle of

convergence observed from a number of experiments.

In this research, the proposed HMGA model explained above is applied to the Kursawe test

function. The populations of candidate solutions are generated according to the specific range

and constraints of the test function. These solutions are then separated into replaceable and non-

replaceable memory and optimised using the HMGA flow as given in Fig. 3. As multiple

objectives are involved in these two studies, the value obtained for each objective is calculated

based on the equations given in previous sections for the Kursawe test functions. The

achievement of each objective is then used to categorise the solution as non-dominated (first-

rank) or dominated (second-rank). Then, the evolution of optimisation is conducted using the

proposed HMGA model in which the HMGA elitism is incorporated to evaluate the fitness of

each solution. To match and compare with [21], the maximum iteration cycle is used as the

termination criterion. The results of these benchmark studies based on the evaluation of our

HMGA model are discussed in the next section.

Soft Computing, July 2015

http://link.springer.com/article/10.1007/s00500-015-1767-5 8
DOI 10.1007/s00500-015-1767-5

Fig. 2. Pseudocode of proposed HMGA

Initialize parameter setting

t = 0

create initial random population P with size N.

P is separated into two portion rm and irm by

ratio

i = 0

while i < maxevaluation do

 begin
Get initial population PP from P with size M

 repeat

 begin

 S = selection (PP)

 C = crossover (S)

 M = mutation (C)

 Keep one elit from PP into M

 Next generation PPN = M

 end

until nominal convergence is reached

Copy two non-dominated solutions (elit) from

PPN to archive

if archive is reached archivesize when trying to

insert elit

 then adaptive grid (elit)

end if

Copy two elits from PPN to rm

if i mod replacement cycle

 then replace all rm memory with archive until

rm is full

end if

i = i + 1

end while

Soft Computing, July 2015

http://link.springer.com/article/10.1007/s00500-015-1767-5 9
DOI 10.1007/s00500-015-1767-5

Fig. 3. Proposed HMGA flow chart

6 RESULTS AND DISCUSSION

In this study, the experimental settings for the proposed HMGA are most similar to the MGA

model in [21]. Table I shows the settings of evolutionary parameters in the HMGA and MGA

models.

In Table I, the first column shows the parameters of the Kursawe function experiment and the

second and third columns present the setting values for the MGA and HMGA respectively. The

only setting difference is in elite size, as the MGA uses elite size 3 and our proposed HMGA uses

elite size 2. The elite size is reduced to decrease computational complexity. As shown in Table I

and the HMGA mechanism, the optimisation process begins with memory size 50, external

memory size 100 and population size 4 for the evolution before reaching nominal convergence.

The ratio of replaceable memory is 70%, and the crossover probability is 0.8 for both algorithms.

Binary tournament selection is used as the selection method. The overall replacement cycle is

activated every 25 evolutions such that all solutions in the replaceable memory are replaced with

Soft Computing, July 2015

http://link.springer.com/article/10.1007/s00500-015-1767-5 10
DOI 10.1007/s00500-015-1767-5

the solutions stored in archive y. Two performance indicators (GD and SP) are used in this

experiment.

TABLE I

MGA and HMGA Parameter Settings for Kursawe Test Function

Parameter of Kursawe Function

Experiment
MGA value [21] HMGA value

Population Size, M 4 4

Maximum Iteration 12000 12000

Memory Size, N 50 50

Ratio of Replaceable Memory 70% 70%

External Memory Size 100 100

Bi-sections for Adaptive Grid 5 5

Nominal Convergence 2 2

Probability of Two-Point

Crossover
0.8 0.8

Probability of Uniform Mutation 𝑥=1 𝑥=1

Perturbation Index of Uniform

Mutation
1 1

Selection Method Binary Tournament Binary Tournament

Replacement Cycle 25 25

Elite Size 3 2

MOEA Indicator GD, SP GD, SP

One-hundred experiments have been conducted on the Kursawe test function to evaluate the

performance of the proposed HMGA. To achieve a more comprehensive comparison between the

HMGA and MGA, the best, worst, mean, median and standard deviation values obtained from

the performance indicators are included in the analysis. As mentioned in section 4, the smaller

the GD value the closer the result to the optimum. Table II presents the comparison between the

MGA and HMGA in terms of GD. The MGA result reported in [21] is presented in Table II

where the best, worst, mean, median and standard deviation values are reported as 0.00680344,

0.0103437, 0.008456311, 0.008489235 and 0.00098659, respectively. The statistical values for

HMGA in Table II are calculated based on the accumulated results of 100 experiments (Table I).

The statistical bound of the HMGA with the best and worst GD (ranging 0.00032050–

0.00128554) are lower than the reported MGA's best GD (0.00680344). Thus, the HMGA shows

better performance than the MGA in terms of GD. The HMGA has a mean 94%-increment

advantage over the MGA, which indicates a more effective search mechanism.

Soft Computing, July 2015

http://link.springer.com/article/10.1007/s00500-015-1767-5 11
DOI 10.1007/s00500-015-1767-5

TABLE II

Generational Distance

GD MGA [21] HMGA

Best 0.00680344 0.00032050

Worst 0.0103437 0.00128554

Mean 0.008456311 0.00054287

Median 0.008489235 0.00051027

Standard

Deviation
0.00098659 0.00015325

TABLE III

Spacing (SP)

SP MGA [21] HMGA

Best 0.0716859 0.01355709

Worst 0.203127 0.03337811

Mean 0.12889499 0.02138230

Median 0.126655 0.02130097

Standard

Deviation
0.02993154 0.00283567

The Kursawe test function-indicator analysis for SP was also carried out on both the MGA and

HMGA (Table III). Importantly, the statistical bound of MGA fluctuates significantly, ranging

0.203127–0.0716859, whereas the more stable SP values for the HMGA range 0.03337811–

0.01355709. There is no dramatic difference between the best and worst SP values, and the

standard deviation of the HMGA is comparatively smaller than that of the MGA. Therefore, the

HMGA's performance throughout the 100 conducted experiments is consistent. Observations

from the SP values prove that the HMGA results distribute more evenly compared to the results

of the MGA.

7 CONCLUSION

The experiment results for the Kursawe test function indicate that the HMGA directs the search

towards the Pareto optimal front effectively. Two indicators (GD and SP) are used to evaluate the

performance of the HMGA in Kursawe test function. The results show that the HMGA

outperforms the MGA and overcomes the difficulties in the test function. The crowding-distance

selection used in the HMGA is most likely a main factor in the HGMA's more even distribution

of solutions along the Pareto optimal front. The HMGA is a potential evolutionary algorithm for

MOPs.

Soft Computing, July 2015

http://link.springer.com/article/10.1007/s00500-015-1767-5 12
DOI 10.1007/s00500-015-1767-5

ACKNOWLEDGMENTS

This research was funded by a Knowledge Transfer Program (KTP) Grant in collaboration with

Unimap and Myreka Sdn Bhd.

REFERENCES

1. Deb, K., Recent Developments in Evolutionary Multi-Objective Optimization, in Trends

in Multiple Criteria Decision Analysis, M. Ehrgott, J.R. Figueira, and S. Greco, Editors.

2010, Springer US. p. 339-368.

2. Forrest, S., Genetic algorithms: principles of natural selection applied to computation.

Science, 1993. 261(5123): p. 872-878.

3. Goldberg, D.E. and J.H. Holland, Genetic algorithms and machine learning. Machine

learning, 1988. 3(2): p. 95-99.

4. Coello, C.C. and G.B. Lamont, An introduction to multi-objective evolutionary

algorithms and their applications. Applications of Multi-Objective Evolutionary

Algorithms, 2005: p. 1-28.

5. Deb, K., Introduction to Evolutionary Multiobjective Optimization, in Multiobjective

Optimization, J. Branke, et al., Editors. 2008, Springer Berlin Heidelberg. p. 59-96.

6. Lipinski, P., Practical applications of evolutionary computation to financial engineering:

robust techniques for forecasting, trading, and hedging (iba, h. and aranha, c.c.;

2012)[book review]. Computational Intelligence Magazine, IEEE, 2012. 7(2): p. 75-76.

7. Holland, J.H., Adaptation in Natural and Artificial Systems. The University of Michigan

Press. 1975.

8. Eiben, A.E. and T. Bäck, Empirical investigation of multiparent recombination operators

in evolution strategies. Evolutionary Computation, 1997. 5(3): p. 347-365.

9. Iba, H. and C. Aranha, Introduction to Genetic Algorithms, in Practical Applications of

Evolutionary Computation to Financial Engineering. 2012, Springer Berlin Heidelberg. p.

1-17.

10. Carcangiu, S., A. Fanni, and A. Montisci, Multiobjective Tabu Search Algorithms for

Optimal Design of Electromagnetic Devices. Magnetics, IEEE Transactions on, 2008.

44(6): p. 970-973.

11. Ho, S.L., et al., A tabu method to find the Pareto solutions of multiobjective optimal

design problems in electromagnetics. Magnetics, IEEE Transactions on, 2002. 38(2): p.

1013-1016.

12. Nebro, A.J., et al., AbYSS: Adapting Scatter Search to Multiobjective Optimization.

Evolutionary Computation, IEEE Transactions on, 2008. 12(4): p. 439-457.

13. Dasheng, L., et al., A Multiobjective Memetic Algorithm Based on Particle Swarm

Optimization. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on,

2007. 37(1): p. 42-50.

Soft Computing, July 2015

http://link.springer.com/article/10.1007/s00500-015-1767-5 13
DOI 10.1007/s00500-015-1767-5

14. Smith, K.I., et al., Dominance-Based Multiobjective Simulated Annealing. Evolutionary

Computation, IEEE Transactions on, 2008. 12(3): p. 323-342.

15. Srinivas, N. and K. Deb, Muiltiobjective optimization using nondominated sorting in

genetic algorithms. Evolutionary Computation, 1994. 2(3): p. 221-248.

16. Horn, J., N. Nafpliotis, and D.E. Goldberg. A niched Pareto genetic algorithm for

multiobjective optimization. in Evolutionary Computation, 1994. IEEE World Congress

on Computational Intelligence., Proceedings of the First IEEE Conference on. 1994.

17. Fonseca, C.M. and P.J. Fleming. Genetic Algorithms for Multiobjective Optimization:

FormulationDiscussion and Generalization. in ICGA. 1993.

18. Zitzler, E. and L. Thiele, Multiobjective evolutionary algorithms: a comparative case

study and the strength Pareto approach. Evolutionary Computation, IEEE Transactions

on, 1999. 3(4): p. 257-271.

19. Zitzler, E., M. Laumanns, and L. Thiele, SPEA2: Improving the strength Pareto

evolutionary algorithm. 2001, Eidgenössische Technische Hochschule Zürich (ETH),

Institut für Technische Informatik und Kommunikationsnetze (TIK).

20. Knowles, J.D. and D.W. Corne, Approximating the nondominated front using the Pareto

archived evolution strategy. Evolutionary Computation, 2000. 8(2): p. 149-172.

21. Coello, C.A.C. and G. Pulido, Multiobjective structural optimization using a

microgenetic algorithm. Structural and Multidisciplinary Optimization, 2005. 30: p. 388–

403.

22. Deb, K., et al., A fast and elitist multiobjective genetic algorithm: NSGA-II. Evolutionary

Computation, IEEE Transactions on, 2002. 6(2): p. 182-197.

23. Hwang, C.-L. and A.S.M. Masud, Multiple Objective Decision Making — Methods and

Applications : A State-of-the-Art Survey. Lecture Notes in Economics and Mathematical

Systems. 1979: Springer Berlin Heidelberg.

24. Bartz-Beielstein, T., et al. Particle swarm optimizers for Pareto optimization with

enhanced archiving techniques. in Evolutionary Computation, 2003. CEC'03. The 2003

Congress on. 2003: IEEE.

25. Knowles, J., ParEGO: a hybrid algorithm with on-line landscape approximation for

expensive multiobjective optimization problems. Evolutionary Computation, IEEE

Transactions on, 2006. 10(1): p. 50-66.

26. Bastos-Filho, C.J.A., et al., Wavelength Assignment for Physical-Layer-Impaired Optical

Networks Using Evolutionary Computation. Optical Communications and Networking,

IEEE/OSA Journal of, 2011. 3(3): p. 178-188.

27. Precup, R.-E., et al., Gravitational Search Algorithm-Based Tuning of Fuzzy Control

Systems with a Reduced Parametric Sensitivity, in Soft Computing in Industrial

Applications, A. Gaspar-Cunha, et al., Editors. 2011, Springer Berlin Heidelberg. p. 141-

150.

28. Lughofer, E., A dynamic split-and-merge approach for evolving cluster models. Evolving

Systems, 2012. 3(3): p. 135-151.

29. Kursawe, F., A variant of evolution strategies for vector optimization, in Parallel

Problem Solving from Nature, H.-P. Schwefel and R. Männer, Editors. 1991, Springer

Berlin Heidelberg. p. 193-197.

30. Durillo, J.J. and A.J. Nebro, jMetal: A Java framework for multi-objective optimization.

Advances in Engineering Software, 2011. 42(10): p. 760-771.

Soft Computing, July 2015

http://link.springer.com/article/10.1007/s00500-015-1767-5 14
DOI 10.1007/s00500-015-1767-5

31. Raquel, C.R. and P.C. Naval Jr. An effective use of crowding distance in multiobjective

particle swarm optimization. in Proceedings of the 2005 conference on Genetic and

evolutionary computation. 2005: ACM.

32. Wang, J., et al. Multi-Objective Particle Swarm Optimization Based on Self-Update and

Grid Strategy. in Proceedings of the 2012 International Conference on Information

Technology and Software Engineering. 2013: Springer.

33. Leung, M.-F., et al. A new strategy for finding good local guides in MOPSO. in

Evolutionary Computation (CEC), 2014 IEEE Congress on. 2014: IEEE.

34. Van Veldhuizen, D.A. and G.B. Lamont, Multiobjective evolutionary algorithm research:

A history and analysis. 1998, Citeseer.

35. Van Veldhuizen, D.A. and G.B. Lamont. On measuring multiobjective evolutionary

algorithm performance. in Evolutionary Computation, 2000. Proceedings of the 2000

Congress on. 2000: IEEE.

36. Pulido, G.T. and C.A.C. Coello. Using clustering techniques to improve the performance

of a multi-objective particle swarm optimizer. in Genetic and Evolutionary Computation–

GECCO 2004. 2004: Springer.

37. Yang, F.-C. and B. Ni. Water Flow-Like Optimization Algorithm for Multi-objective

Continuous Optimization Problem. in Proceedings of 2013 4th International Asia

Conference on Industrial Engineering and Management Innovation (IEMI2013). 2014:

Springer.

38. Baesler, F. and C. Palma, Multiobjective parallel machine scheduling in the sawmill

industry using memetic algorithms. The International Journal of Advanced

Manufacturing Technology, 2014. 74(5-8): p. 757-768.

39. Maheta, H.H. and V.K. Dabhi. An improved SPEA2 Multi objective algorithm with non

dominated elitism and Generational Crossover. in Issues and Challenges in Intelligent

Computing Techniques (ICICT), 2014 International Conference on. 2014.

40. Schott, J.R., Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm

Optimization. 1995, DTIC Document.

41. Eskandari, H. and C. Geiger, A fast Pareto genetic algorithm approach for solving

expensive multiobjective optimization problems. Journal of Heuristics, 2008. 14(3): p.

203-241.

