
"Digital and Analogue Electronics: Circuits and Systems", Publication Unit, Universiti Malaysia Perlis, 2015

Copyright © 2014 Asral Bahari Jambek.. Personal use of this material is permitted. Permission from the authors must be obtained

for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional

purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of

this work in other works.

CHAPTER 3

QBMO Motion Estimation Search Algorithm Performance Evaluation

for Video Compression

Asral Bahari Jambek, Arief Affendi Juri, Rizalafande Che Ismail and Mohd Nazrin Md Isa

School of Microelectronic Engineering, Universiti Malaysia Perlis, Malaysia

asral@unimap.edu.my

3.1. Introduction

The high demand for higher quality and a lower bitrate has driven the video community to

produce better video compression standards from time to time. For example, H.264 is able to

achieve better video quality results by more than 2 dB and 3 dB as compared to MPEG-4 and

H.263, respectively. Furthermore, with the same video quality, H.264 is able to produce a 50%

bit-rate reduction as compared to MPEG-4 [1-3].

However, these improvements come at the cost of an increase in computational time. As

compared to H.263, H.264 the encoding and decoding times increase by three and two times,

respectively. Most of these increments are contributed by the motion estimation (ME) module,

which plays a vital part in determining the quality of the video compression output. The module

can consume from 70% (one reference frame) to 90% (five reference frames) of the total

encoding time [4-6]. This shows that reducing the ME computational load will result in a

significant overall computational load reduction.

With the H.264 standard, the reference software implements an UMHexagonS algorithm as

one part of its ME. The algorithm combines several ME techniques to create a fast search ME

algorithm. It achieves good compression efficiency and faster searches compared to the full

search algorithm. Thus, this algorithm will be focus in this work. UMHexagonS consists of five

different steps, namely: initial search point prediction, unsymmetrical cross search, small full

search, uneven multi-hexagon-grid search, and extended hexagon-based search, the latter of

which contains a small diamond search [8-10].

3.2. A Quadrant-Based Multi-Octagon Search Algorithm (QBMO)

To further reduce the computational load in UMHexagonS, the quadrant-based multi-

octagon search algorithm (QBMO) is proposed [7]. The algorithm focuses on the fourth step of

the UMHexagonS algorithm by implementing the multi-octagon-grid search to replace the multi-

hexagon-grid search. Furthermore, a quadrant-based search is implemented on top of multi-

octagon-grid search, which results in four quadrant shapes, as shown in Figure 3.1. The quadrant

to be used is dependent on the motion vector (MV) of the block in the previous frame. An

example of determining the quadrant is given in Figure 3.2. The quadrant where the MV of the

previous frame is located - labelled with a triangle, as shown in Figure 3.2(a) - will be chosen as

the quadrant where the search will be performed.

To evaluate the performance of QBMO, the algorithm will be compared against existing

algorithms. First, the study will measure the performance against the individual algorithms

implemented in each step of UMHexagonS. Next, the performance improvement when QBMO’s

implementation is combined with another algorithm will be studied.

As discussed in Section 3.1, the second step of UMHexagonS is an unsymmetrical-cross

search. This algorithm evaluates the best match surrounding the search centre with 24 total

search points. In this work, the irregular-cross template [10] is chosen as the second stage of the

UMHexagonS algorithm. While the standard unsymmetrical cross search is emphasized only on

the horizontal search, the irregular cross template emphasizes both the horizontal and vertical

motion conditions. Furthermore, the algorithm biases the search location towards the best-

predicted initial place location, as shown in Figure 3.3. In this example, the dark round shape

represents the current block’s location and the square shape represents the best initial place. The

implemented cross template points are represented by the white round shape.

The third step of UMHexagonS is a small full search, where it will evaluate a 5x5 search

area around the central location, with a total of 25 search points. To reduce the computational

load involved in this step, a small full search of 3x3 is used, as proposed in [11]. It is found that

80% of the MV is distributed within the 5x5 search area, while 70% of the MV is distributed

within the 3x3 search area. The 10% reduction in terms of MV distribution coverage during the

search is compensated for by the reduction of more than 60% of the search candidate. This

greatly reduces the computational complexity of this step.

The fifth step of UMHexagonS implements a conventional extended hexagon-based search.

This work replaces this algorithm with horizontal and vertical hexagon searches [11], as shown

in Figure 3.4. The selection of the search pattern to be used is decided based upon the block size.

A 16x16 or 8x8 block size utilizes a uniform hexagon shape, as in Figure 3.4 (a). For a 16x8 or

8x4 block, the horizontal hexagon shape, as in Figure 3.4 (b), will be used. The vertical hexagon

shape, as in Figure 3.4(c), will be used by an 8x16 or 4x8 block size. A summary of the

equivalent implementation for UMHexagonS is shown in Table 3.1.

(a) (b) (c) (d)

Figure 3.1. Four quadrant of the quadrant-based multi-octagon search.

(a) (b)

Figure 3.2: Determining the multi-octagonal search quadrant: (a) the triangle represents

the MV of the block located in the previous frame, (b) the chosen quadrant for the current

block.

Figure 3.3. The red point is the current block’s location, the blue point is the best initial

place, and the yellow points are the cross template points [10].

 (a) (b) (c)

Figure 3.4. Three hexagonal patterns implemented in [11]: (a) Uniform hexagon (b)

Horizontal hexagon (c) Vertical Hexagon.

Table 3.1: Summary of the equivalent algorithm for UMHexagonS

No UMHexagonS Steps Equivalent Implementation

1 Initial prediction -

2 Unsymmetrical cross search Irregular cross search [10]

3 5x5 full search 3x3 full search [11]

4 Multi hexagon-grid search QBMO

5 Extended hexagon search Horizontal and vertical hexagon [11]

3.3. Results and Analysis

In this work, the simulation was performed using an Intel Core i5 processor 430M

(2.26GHz, 3MB l3 Cache), 2GB RAM and Windows 7 Home Premium 64-bit. The algorithm

was tested on the H.264 reference software (JM17.2) with the simulation setup as shown in

Table 3.2 using six test video sequences: Bus, Football, Foreman, Silent, News and Hall. All the

video test sequences were in CIF format (352x288 pixels), which targeted portable application.

These video samples have been categorized into three groups, namely: aggressive motion (the

Bus and Football videos), medium motion (the Foreman and Silent videos) and low motion (the

News and Hall videos).

In order to evaluate the performance of each algorithm, ten simulation settings are

performed, as shown in Table 3.3. Algorithm 1 represents the conventional UMHexagonS

algorithm of the reference software. This algorithm will become the reference algorithm when

comparing the performance with other algorithms. Algorithms 2 through to 10 replace the

specific step in the UMHexagonS algorithm with one of the algorithms listed in Table 3.3. In the

table, the symbol ‘tick’ denotes that the conventional UMHexagonS step is being used in that

specific step, while the name of the algorithm is shown if the step is performed by any equivalent

algorithm.

Two types of simulations were performed for this work, Type A and Type B. The Type A

simulation replaces one step of the UMHexagonS algorithm at a time. This is represented by

Algorithms 2 through to 7. The purpose of the simulation was to measure the effectiveness of the

QBMO as compared to other existing methods. The Type B simulation replaces all the steps in

UMHexagonS (except for step 1) with other algorithms. This is represented by Algorithms 9 and

10, as shown in Table 3.3. This simulation measures further reductions when QBMO is used

with other existing algorithms in order to improve the overall performance of UMHexagonS.

Table 3.4 through to Table 3.6 give the performance results for each video benchmark in

terms of the ME simulation time (MET), the PSNR and the bitrate. From the table, Algorithms 2-

9 give a higher MET reduction time for aggressive motion videos. This is due to the fact that

aggressive video motions tend to have a bigger MV, since their best match location is typically

located further away from their original locations. On the other hand, low motion videos tend to

have their best match location located at the same or close to their original positions. This causes

the algorithms have only a slight impact on these types of videos, because most of the time they

will enter into early termination steps. If this happens, the ME step will be skipped and the

original position will be taken as the best position.

For the Type A simulation, comparing Algorithms 1 through to 7, Algorithm 7 is able to

outperform all the other algorithms in terms of MET, whereby it gives a reduction of up to

18.2%. This is achieved without sacrificing the quality of the video (PSNR) or the bitrate. For

Algorithm A, the maximum decrease in PSNR is only about 0.015dB, with an average PSNR

drop of 0.002dB. However, this small change in the PSNR will not affect the visual quality

significantly, since it will not be visible to the human eye [13]. The worst bitrate increment for

Algorithm 8 is only 1.21% (or 18.89 kb/s). This shows that the QBMOs are effective in reducing

the computational load for the ME engine in video compression.

For the Type B simulation, both Algorithms 8 and 9 utilize the same algorithm for steps

2, 3 and 5. However, for step 4, Algorithm 9 uses a multi-octagon-grid search, whereas

Algorithm 10 uses a QBMO search algorithm. Based on the results, Algorithm 10 gives the

highest reduction in terms of MET for all video sample categories, with a maximum reduction of

28.66% in MET; moreover, this reduction is achieved without degrading the PSNR or bitrate

significantly. From the table, the worst PSNR drop is only 0.015. The highest bitrate increment

for Algorithm 10 is only 1.43% (or 5.64kb/s).

Table 3.2: H.264 Parameters for the Algorithms’ Simulation
Parameter Value

Profile Baseline
Level 4.0
Codec JM17.2
Image format CIF (352x288 pixels)
MV search range 32
Frame rate 30 fps
RD optimization On
Total number of reference 5
Sequence type IPPP
Entropy coding CAVLC
Encoded frames 100
Motion Estimation for component Y (luma)

Table 3.3: Simulation Results for the Bus Video Sample
Algo-

rithm.

No.

1st Step: initial

prediction

2nd Step:

Unsymmetrical cross

search

3rd Step: 5x5

full search

4th Step: Multi

hexagon-grid

search

5th Step: Extended

hexagon search

1

2 Irregular cross search

3
New 3x3

square search

4 Full octagon search Full octagon search

5
Multi-octagon-grid

search

6
Horizontal and

vertical hexagon

7 QBMO

8 Irregular cross search
New 3x3

square search

Multi-octagon-grid

search

Horizontal and

vertical hexagon

9 Irregular cross search
New 3x3

square search
QBMO

Horizontal and

vertical hexagon

TABLE 3.4: Motion Estimation Simulation Time (Met) Percentage Difference As

Compared To the Conventional UMHexagonS Algorithm.
Algo-

rithm.

No.

Features Bus Football Foreman Silent News Hall Average

1 UMHexagonS 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 Irregular cross search -0.28 -0.05 0.23 6.37 -0.64 6.39 2.01

3 New 3x3 square search -1.40 -4.21 -1.64 5.05 -1.07 5.72 0.41

4 Full octagon search -6.98 -10.16 -1.80 4.43 -1.98 6.23 -1.71

5
Multi-octagon-grid

search
-8.06 -11.77 -3.03 3.24 -2.69 5.41 -2.82

6
New extended hexagon

grid search
-1.39 -2.27 -1.17 4.75 -1.66 6.27 0.76

7 QBMO -12.29 -18.21 -5.79 -9.16 -4.39 -5.99 -9.31

8
Combined Algorithm

2,3,5 & 7
-11.82 -17.31 -6.05 0.89 -3.95 3.64 -5.77

9
Combined Algorithm

2,3,6 & 7
-20.45 -28.66 -12.32 -15.16 -9.60 -11.73 -16.32

Table 3.5: PSNR difference as compared to the conventional UMHexagonS algorithm.

Algo-

rithm.

No.

Features Bus Football Foreman Silent News Hall Average

1 UMHexagonS 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2 Irregular cross search -0.003 -0.009 -0.003 -0.003 0.005 -0.012 -0.004

3 New 3x3 square search 0.010 -0.004 -0.010 0.005 -0.006 -0.005 -0.002

4 Full octagon search 0.003 -0.014 -0.014 0.001 0.019 -0.011 -0.003

5
Multi-octagon-grid

search
0.013 -0.015 -0.022 -0.005 0.008 -0.004 -0.004

6
New extended hexagon

grid search
-0.003 -0.010 -0.029 -0.006 0.010 -0.002 -0.007

7 QBMO 0.019 -0.015 -0.012 -0.007 0.002 -0.001 -0.002

8 Combined Algorithm

2,3,5 & 7
0.010 -0.019 -0.010 0.001 0.008 -0.005 -0.003

9 Combined Algorithm

2,3,6 & 7
0.012 -0.015 -0.014 0.002 0.016 -0.008 -0.001

Table 3.6: Bitrate difference as compared to the conventional UMHexagonS algorithm.

Algo-

rithm.

No.

Features Bus Football Foreman Silent News Hall Average

1 UMHexagonS 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 Irregular cross search -0.04 -0.01 -0.01 0.05 -0.06 -0.10 -0.03

3 New 3x3 square search 0.02 0.12 0.34 0.04 -0.17 -0.06 0.05

4 Full octagon search 0.40 0.61 0.21 -0.19 -0.57 0.16 0.10

5
Multi-octagon-grid

search
0.78 0.60 0.43 0.21 0.22 0.10 0.39

6
New extended hexagon

grid search
0.19 0.16 0.37 0.01 -0.28 0.11 0.09

7 QBMO 1.07 1.21 0.63 0.08 -0.09 0.07 0.49

8
Combined Algorithm

2,3,5 & 7
0.67 0.19 0.64 0.24 -0.21 -0.51 0.17

9
Combined Algorithm

2,3,6 & 7
1.26 0.92 1.43 0.28 -0.48 -0.10 0.55

3.4. Conclusion

This paper discusses the performance comparison of the UMHexagonS motion estimation

search algorithm utilizing a quadrant-based multi-octagon search. Based on the experimental

results, it is seen that the proposed algorithm is able to reduce the motion estimation time by up

to 18.21% it is implemented in step 4 of the UMHexagonS. A further reduction of 28.66% is

achieved when combining the algorithm with other algorithms for steps 2, 3, and 5. In the future,

this work will be further extended to evaluate the effectiveness of this technique for H.265

motion estimation implementation.

References

[1] A. Jimenez-Moreno, E. Martinez-Enriquez, F. Diaz-de-Maria, "Mode Decision-Based

Algorithm for Complexity Control in H.264/AVC", IEEE Transactions on Multimedia,

vol 15, issue 5, pp. 1094-1109, Aug. 2013

[2] Weiyao Lin, K. Panusopone, D. M. Baylon, Sun Ming-Ting, Chen Zhenzhong, Li

Hongxiang, "A Fast Sub-Pixel Motion Estimation Algorithm for H.264/AVC Video

Coding", IEEE Transactions on Circuits and Systems for Video Technology, vol 21,

issue 2, pp. 237-242, 2011.

[3] Jianning Zhang, Yuwen He, Shiqiang Yang and Yuzhuo Zhong, “Performance and

Complexity Joint Optimization for H.264 Video Coding”, Proceeding of International

Symposium on Circuit an System, 2003, Vol. 2, pp. 888-891.

[4] Zhou Wei and Zhou Xin, "A fast hierarchical 1/4-pel fractional pixel motion estimation

algorithm of H.264/AVC video coding,", 8th IEEE Conference on Industrial Electronics

and Applications (ICIEA), 2013, pp.891-895.

[5] H.F. Ates, Y.Altunbasak, "Rate-Distortion and Complexity Optimized Motion Estimation

for H.264 Video Coding," IEEE Transactions on Circuits and Systems for Video

Technology, vol.18, no.2, pp.159,171, Feb. 2008.

[6] Zhibo Chen and Yun He, “Fast Integer and Fractional Pel Motion estimation”, Joint

Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG, Geneva, 2002.

[7] Arief Effandi Juri and Asral Bahari Jambek, “Improved UMHexagonS Algrithm and

Architecture for Low Power H.264 Video Compression”, M.Sc Thesis, Universiti

Malaysia Perlis, Malaysia, 2013.

[8] Yufeng Li; Jufei Xiao; Wei Wu, "Motion estimation based on H.264 video coding," 5th

International Congress on Image and Signal Processing (CISP), 2012, pp.104-108.

[9] Xie Lifen, Huang Chunqing and Chen Bihui, "UMHexagonS search algorithm for fast

motion estimation," 3rd International Conference on Computer Research and

Development (ICCRD), 2012, vol.1, no. pp.483 - 487.

[10] Peng Huang and Cui-Hua Li, “Irregularity-cross multi-hexagon-grid search algorithm for

fastmotion estimation on H.264”, 2nd International Conference on Computer

Engineering and Technology, 2010, vol. 3, pp. 587-592.

[11] Li, H. Y., Liu, M. J., & Zhang, Z. Q. “A New Fast Motion Estimation Algorithm Based

on H.264. International Conference on Multimedia Information Networking and Security,

2009, vol 1, pp. 287-290,.

[12] Xingyu, W., & Guiju, L.. Optimization on Motion Estimation Algoriithm Based on

H264. 3rd International Conference on Advance Computer Theory and Engineering,

2010, vol. 5, pp. 590-593.

[13] Thomos, N., Boulgouris, N., & Strintzis, M, “Optimized transition of JPEG2000 streams

over wireless channels. IEEE Trans. Image Processing, vol 1, no 15, pp54 – 67, 2006.

