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ABSTRACT 

Wireless Sensor Networks (WSNs) are becoming important in today’s technology in helping monitoring our 

surrounding environment. However, wireless sensor nodes are powered by limited energy supply. To extend 

the lifetime of the device, energy consumption must be reduced. Data transmission is known to consume the 

largest amount of energy in a sensor node. Thus, one method to reduce the energy used is by compressing 

the data before transmitting it. This study analyses the performance of the Huffman and Lempel-Ziv Welch 

(LZW) algorithms when compressing data that are commonly used in WSN. From the experimental results, 

the Huffman algorithm gives a better performance when compared to the LZW algorithm for this type of 

data. The Huffman algorithm is able to reduce the data size by 43% on average, which is four times faster 

than the LZW algorithm. 
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1. INTRODUCTION 

The increasing usage of wireless communication 

devices has resulted in the rapid development of 

Wireless Sensor Networks (WSNs). The devices monitor 

and collect data before transmitting it to the base station. 

Due to its wireless capability, the system can be 

implemented in many applications, including military, 

industry, medical and agricultural. 

One of the problems in implementing WSN is the 

energy consumed by the sensor node. Due to its small 

size, the sensor node has a limited energy supply and 

storage capacity. Thus, researchers need to find ways to 

reduce its power consumption so that the device’s 

lifetime can be increased without the frequent need for 

the replacement of batteries. 
Among the many components of the sensor node, the 

communication module has the largest power 
consumption (Li, Delicato and Zomaya, 2013). This is 
because a huge amount of energy is needed to power up 
the wireless transmitter in order to transmit the data. 
Thus, one way to reduce the energy consumption is by 
compressing the data before transmission. By doing 
this, the amount of data needed to be transmitted to 
other nodes reduces, thus, reducing the power 
consumption due to the transmission. The higher that 
the data compression ratio is, the more power can be 
saved when transmitting the data. 

The existing literature discusses the performance 

of the data compressed using different data types, 

such as text, images and others. In this work, we 

compare the performance of the data compression that 

is commonly used for WSNs. 

In this study, two different data compression methods 

were analysed, namely the Huffman and Lempel-Ziv 

Welch (LZW) algorithms. The aim of the work is to 

identify the method that could results in the highest 

compression ratio and performance.  

This study is organized as follows. Section II discusses 

the existing work on data compression techniques. In 

Section III, the Huffman and LZW data compression 

algorithms are discussed. Section IV highlights the results 

obtain in this study. Lastly, Section V concludes the paper. 

1.1. Literature Review 

In (Wang, 2011), a comparison between static and 

dynamic Huffman coding techniques was made. The 

temperature and humidity data were measured using a 

sensor and converted into binary using a 14-bit ADC. The 

results show that static Huffman has a better compression 

ratio than dynamic Huffman. Due to its simple algorithm, 

static Huffman can compute faster and compress better. 

Paper (Shahbahrami, Bahrampour, Rostami and 

Mobarhan, 2011) discusses the comparison between the 

Huffman and arithmetic data compression algorithms using 
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image files. From the experimental results, as the size of the 

image file increases, the compression ratio also increases. 

The time taken for the Huffman algorithm to execute is 

shorter compared to the arithmetic algorithm. To compress 

a 128128 image size, Huffman takes 0.14 sec while 

arithmetic coding requires 0.45 sec to complete the task. 

The paper by (Patil and Kulat, 2011) analysed image 

and text data using Huffman and Run Length Encoding 

(RLE). It analysed the compression ratio, time elapsed, 

mean square error (MSE) and peak signal to noise ratio 

(PNSR). The compression ratio for the Huffman 

algorithm is higher than for RLE due to its compact 

compress. But RLE achieved the fastest compression 

time due to its simple algorithm. 

A survey was done in (Shanmugasundaram and 
Lourdusamy, 2011) to compare the performance between 
different types of data compression. Different file types 
and sizes were used in this research, consisting of 
various benchmark text files. From the paper, the LZW 
algorithm performs slightly better than the Huffman 
algorithm, with each of them consuming 4.9 and 5.7 bits 
per character, respectively. 

Paper (Kodituwakku, S.R. and U.S. Amarasinghe, 
2010) focuses on the compression of multiple sizes of 
text data. For the LZW, the compression ratio ranges 
between 30 and 60% and this ratio decreases as the file 
size increases. This is because larger text data will create 

longer LZW code. For Huffman coding, the compression 
ratio is obtained between 58 and 67%. The compression 
time for the LZW algorithm is larger than the Huffman 
algorithm because the scanning window or the LZW 
algorithm takes more time in order to fill up the 
dictionary inside the LZW. Although the compression 

time is longer, it takes a shorter time to decompress 
using the LZW algorithm than the Huffman algorithm. 
This is because the decoding process only needs to 
decode the data by matching the LZW code with the 
code inside the library. 

While the existing method focuses more on text and 

image data, this study will focus especially on data that 

are commonly used in WSN, such as temperature, 

humidity and ECG. In the next section, the data 

compression that is used in this study will be elaborated. 

2. MATERIALS AND METHODS 

This section describes the work done for this study. 

First, it will discuss the Huffman algorithm, followed by 

a discussion of the LZW algorithm. In addition, the 

compression performance for a combined Huffman- 

LZW algorithm will also be discussed.  

The Huffman encoder uses the instruction’s 

frequency to determine the length of the codewords that 

replace the original ones. The frequently used 

instructions use shorter codewords as opposed to the less 

frequent ones (Bonny and Henkel, 2010). Figure 1 and 

2 shows the flow chart for the Huffman encoder and 

decoder, respectively. 

Unlike Huffman coding, the LZW encoder replaces 

strings of characters with single codes. Compared to the 

encoder’s input strings, the LZW codes are smaller 

(Asgarizadeh and Abouei, 2013). LZW builds a ‘dictionary’ 

that contains words or parts of words of a datum. When the 

data needs to be decompressed, it needs to refer to the 

dictionary, which in turn represents the LZW code for that 

word (Shahbahrami et al., 2011). Figure 3 and 4 shows the 

LZW encoder and decoder flow charts, respectively. 
For double compression, the combination of Huffman 

followed by LZW (HLZ) and LZW followed by 
Huffman (LZH) were used. Double compression is 
investigated in this work to measure that performance 
when compressing different types of data. 

In this work, there are four types of input data that are 
used, namely temperature, humidity, ECG and text. The 
temperature data were taken from the Average Daily 
Temperature Archive, University of Dayton (Kissock, 
2007). The file contains daily temperatures from 1st 
January 1995 until 31 December 2012. Figure 5 shows 
some samples of the temperature data in Fahrenheit (F). 
For the humidity data, this was taken from the National 
Environmental Satellite, Data and Information Service 
(Dan, 2008). It is a monthly humidity record throughout 
the year 2002. 
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Fig. 1. Huffman encoder flow chart 
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Fig. 2. Huffman decoder flow chart 

 

  
 

Fig. 3. LZW encoder flow chart 
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Fig. 4. LZW decoder flow chart 

 

 
 

Fig. 5. Temperature data 

 

 
 

Fig. 6. Humidity data 
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Fig. 7. (a) ECG data (b) Waveform for the ECG data 

 

Samples of the humidity are shown in Fig. 6. The 

numbers represent a percentage measure of the amount 

of moisture in the air compared to the maximum amount 

of moisture that the air can hoard at the same 

temperature and pressure. 

PhysioBank is a website where the ECG data in this 

work were obtained (PhysioNet, 2011). The data chosen 

concerned an apnoea patient, a disorder manifest by pauses 

in breathing or shallow breaths during sleep. (NIH, 2012) 

Fig. 7 (a) shows the ECG data which is relatively unique 

and has its own pattern. Fig. 7 (b) shows the waveform for 

the ECG data used in this work, where the x axis is the time 

in 10
2

 sec and the y axis is the amplitude in mV. Lastly, the 

text file sample was taken from the Mother Goose Club’s 

website (Sockeye Media LLC, 2013). 

3. RESULTS  

This section discusses the compression results using 

data that are typical for WSNs, such as temperature, 

humidity, ECG and words. For each type of data, four 

different sizes are evaluated. 

Table 1 shows the compression results for various 

data with different sizes compressed using Huffman, 

LZW, HLZ and LZH algorithms. From Table 1, the 

Huffman algorithm performs good compression for 

temperature, humidity, ECG and text data. For 

temperature, the highest saving percentage is 47% for 

data size of 200 bits before compression. The percentage 

decreases as the data size increases. A similar pattern is 

observed for the humidity and ECG data. As compared 

to Huffman, the LZW performs poorly for temperature, 

humidity and ECG data. LZW performs well for text 

data sizes of 800 bits, with a saving percentage of 37% 

being observed. The saving is observed for LZW as the 

data size increases. For double compression, the LZH 

performs better compared to the HLZ. 

Table 2 shows the result of the time taken to 

compress and decompress various data using the 

Huffman, LZW, HLZ and LZH algorithms. For the 

single data compressions, the average time taken to 

compress all four types of data for the Huffman is less 

than for the LZW. The Huffman algorithm only takes 

0.398 sec, while LZW algorithm takes 1.532 sec. For 

the decompression part, the average time taken for the 

LZW is less than for the Huffman for all four types of 

data. The LZW decoder takes 0.102 sec, while the 

Huffman decoder takes 0.357 sec. 
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Table 1. Huffman, LZW, HLZ AND LZH compression performance 

 Size before Size after compression (Bits)  Compression ratio   Saving (%) 

 compression ------------------------------------------------ --------------------------------------------- -------------------------------------------- 

Data type (Bits) Huffman LZW HLZ LZH Huffman LZW HLZ LZH Huffman LZW HLZ LZH 

Temperature 200 106 200 296 106 0.53 1.00 1.48 0.53 47.00 0.00 -48.00 47.00 

 400 247 400 544 247 0.62 1.00 1.36 0.62 38.25 0.00 -36.00 38.25 

 600 398 592 776 396 0.66 0.99 1.30 0.66 34.00 1.33 -29.33 34.00 
 800 550 784 992 546 0.69 0.98 1.24 0.68 31.25 2.00 -24.00 31.75 

Humidity 200 102 200 272 102 0.51 1.00 1.36 0.51 49.00 0.00 -36.00 49.00 

 400 240 400 536 240 0.60 1.00 1.34 0.60 40.00 0.00 -34.00 40.00 

 600 363 584 720 363 0.61 0.97 1.20 0.61 39.50 2.67 -20.17 39.50 

 800 485 752 896 488 0.61 0.94 1.12 0.61 39.38 6.00 -12.00 39.00 

ECG 200 92 184 264 88 0.46 0.92 1.32 0.44 54.00 8.00 -32.00 56.00 
 400 243 384 536 237 0.61 0.96 1.34 0.59 39.25 4.00 -34.00 40.75 

 600 411 584 800 404 0.69 0.97 1.33 0.67 31.50 2.67 -33.33 32.67 

 800 555 776 1000 549 0.69 0.97 1.25 0.69 30.63 3.00 -25.00 31.38 
Text 800 367 504 728 328 0.46 0.63 0.91 0.41 54.13 37.00 9.00 59.00 

 1200 567 696 1000 491 0.47 0.58 0.83 0.41 52.75 42.00 16.67 59.08 

 1600 753 840 1264 626 0.47 0.53 0.79 0.39 52.94 47.50 21.00 60.88 
 2000 936 960 1480 743 0.47 0.48 0.74 0.37 53.20 52.00 26.00 62.85 

 Average  400.94 552.50 756.50 372.13 0.57 0.87 1.18 0.55 42.92 13.01 -18.20 45.07 

 

Table 2. Huffman, LZW, HLZ AND LZH compressions time 

  Time taken (sec) 

  --------------------------------------------------------------------------------------------------------------------- 

 Size before Huffman  LZW  HLZ  LZH 

 Compression ------------------------- ----------------------- -------------------------- ------------------------------- 

Data type (Bits) Encoder Decoder Encoder Decoder Encoder Decoder Encoder Decoder  

Temperature 200 0.143 0.073 0.360 0.027 0.733 0.143 0.492 0.053 

 400 0.790 0.183 0.848 0.119 2.166 0.916 1.040 0.209 

 600 0.481 0.669 1.298 0.098 3.568 4.587 1.684 0.353 

 800 0.313 1.225 2.102 0.120 3.950 6.957 2.009 0.445 

Humidity 200 0.207 0.065 0.509 0.029 0.790 0.163 0.543 0.059 

 400 0.341 0.569 1.506 0.059 4.098 0.518 0.783 0.231 

 600 0.230 0.279 1.863 0.096 4.036 3.838 1.473 0.229 

 800 0.648 0.505 1.805 0.292 2.923 6.339 3.181 0.558 

ECG 200 0.187 0.072 0.748 0.043 1.237 0.163 1.156 0.058 

 400 0.586 0.300 1.151 0.068 3.814 0.531 1.429 0.137 

 600 0.650 0.403 3.284 0.084 4.923 4.317 2.362 0.311 

 800 0.506 0.943 2.581 0.191 3.132 7.605 4.171 0.582 

Text 200 0.178 0.053 0.697 0.055 0.702 0.147 0.823 0.054 

 400 0.222 0.135 1.730 0.075 3.294 0.341 1.462 0.098 

 600 0.447 0.106 1.984 0.107 4.316 0.629 2.424 0.175 

 800 0.446 0.136 2.046 0.171 3.837 3.263 1.926 0.372 

 Average 0.398 0.357 1.532 0.102 2.970 2.529 1.685 0.245 

 

4 . DISCUSSION 
 
From the results discussed in the previous section, it 

can be seen that Huffman performs better for 

temperature, humidity and ECG data. The compression 

performance decreases as the data size increases. This 

pattern is observed because as the branches increases, the 

Huffman code for each of the branches also increases. 

Therefore, the longer the Huffman branches, the longer 

the Huffman code. Thus, the saving percentage 

decreases. 

On the other hand, LZW perform better for text 

data.This is because the algorithm process the data bit-

by-bit that increase the repetition of words that match 

with the words inside the library. For temperature, 

humidity and ECG type of data, they are already 

arranged in a group of bits. Thus, processing them bit-

by-bit will result in an increase in output bits for the 

LZW. 
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For double compression, the LZH performs better 
compared to the HLZ. HLZ gives lower compression 

results for all data types because after the Huffman 
algorithm, the data has been arranged into a certain pattern 
that is not optimized for the LZW library. However, the 
LZH algorithm gives better compression since the output 
from LZW contains a highly repetitive value. This 
repeated value is suitable for Huffman compressions. 

In terms of computational speed, the Huffman 
algorithm requires less time to encode the data 
compared to other algorithms.This is due to the 
Huffman algorithm is being less complex than the 
LZW algorithm, which means it takes less time to 
compress the data. Compare to other algorithm, LZW 

algorithm takes lesser time to decode the data. This is 
because the LZW decoder only needs to scan the LZW 
code through the library, whereas the Huffman decoder 
reads the input bit-by-bit, which is slower. 

 

Table 3. Compression ratio comparison for different 

compression methods. 

 

  

(Wang, 

2011) 
 

(Nakaya 
and 

Nakamura, 

2013) 

(Patil 
and 

Kulat, 

2012) 

(Izadian 
and 

Manzuri, 

2013) 

Our 

work 

Temperature 0.38 - - - 
0.53 
to 

0.69 

Humidity 0.36 - - - 
0.51 
to 

0.61 

ECG - 0.32 - - 

0.46 

to 
0.69 

Text - - 
0.43 to 

0.81 
0.55 to 

0.63 

0.46 

to 

0.47 

 

 

Table 3 compares our results with other published 

papers. Since there is no papers that compare the 

temperature, humidity, ECG and text data within a single 

paper, the comparison is done based on several published 

papers. Data compression on text using Huffman is 

compared against the work done by Patil and Kulat 

(2012) and Izadian and Manzuri (2013). Wang (2011) 

performs Huffman data compression on temperature and 

humidity. However, rather than using the actual value, 

compression on the difference between two data was 

performed. Nakaya and Nakamura (2013) perform ECG 

compression using estimation on R-R interval prediction.  

From the table, for text data, our work shows a 

slightly better compression ratio as compared to Patil and 

Kulat (2012) and Izadian and Manzuri (2013). This 

variation could be the result of using different test 

benches during the experiment. Higher repetitive words 

can result in a lower compression ratio. In addition, 

using data specific algorithms to compress data will 

result in better compression efficiency as shown by 

Wang (2011) and Nakaya and Nakamura (2013). This is 

obvious since the algorithm will take into account the 

specific features of the data during compression. 

However, for general purpose compression as needed in 

wireless sensor nodes, the table shows that the Huffman 

algorithm could give a satisfactory result for the test data 

with a 0.57 average of the compression ratio. 

5. CONCLUSION 

This study analyses the compression performance of 
the Huffman algorithm and the LZW algorithm using 
various input data commonly measured by a wireless 
sensor node, namely temperature, humidity, ECG and 
text data. For the given tested data, the Huffman 
algorithm shows better performance when compared 
to the LZW in terms of compression ratio and 
computation time. From the experiments, the Huffman 
algorithm is able to achieve an average of a 43% data 
reduction. For double compression, the LZH could 
provide up to 9% improvement in terms of data 
reduction, but at the cost of an increase in the 
computation time. In the future, this work will further 
study various techniques on WSN data representation 
to further increase the Huffman algorithm efficiency.  
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