
Corresponding Author: Asral Bahari Jambek, School of Microelectronic Engineering, Universiti Malaysia Perlis,

 Pauh Putra Campus, Perlis

1 Science Publications

AJAS

PERFORMANCE COMPARISON OF

HUFFMAN AND LZW DATA COMPRESSION

FOR WIRELESS SENSOR NODE APPLICATION

Asral Bahari Jambek and Nor Alina Khairi

School of Microelectronic Engineering, Universiti Malaysia Perlis, Pauh Putra Campus, Perlis

ABSTRACT

Wireless Sensor Networks (WSNs) are becoming important in today’s technology in helping monitoring our

surrounding environment. However, wireless sensor nodes are powered by limited energy supply. To extend

the lifetime of the device, energy consumption must be reduced. Data transmission is known to consume the

largest amount of energy in a sensor node. Thus, one method to reduce the energy used is by compressing

the data before transmitting it. This study analyses the performance of the Huffman and Lempel-Ziv Welch

(LZW) algorithms when compressing data that are commonly used in WSN. From the experimental results,

the Huffman algorithm gives a better performance when compared to the LZW algorithm for this type of

data. The Huffman algorithm is able to reduce the data size by 43% on average, which is four times faster

than the LZW algorithm.

Keywords: Component, Formatting, Style, Styling, Insert

1. INTRODUCTION

The increasing usage of wireless communication

devices has resulted in the rapid development of

Wireless Sensor Networks (WSNs). The devices monitor

and collect data before transmitting it to the base station.

Due to its wireless capability, the system can be

implemented in many applications, including military,

industry, medical and agricultural.

One of the problems in implementing WSN is the

energy consumed by the sensor node. Due to its small

size, the sensor node has a limited energy supply and

storage capacity. Thus, researchers need to find ways to

reduce its power consumption so that the device’s

lifetime can be increased without the frequent need for

the replacement of batteries.
Among the many components of the sensor node, the

communication module has the largest power
consumption (Li, Delicato and Zomaya, 2013). This is
because a huge amount of energy is needed to power up
the wireless transmitter in order to transmit the data.
Thus, one way to reduce the energy consumption is by
compressing the data before transmission. By doing
this, the amount of data needed to be transmitted to
other nodes reduces, thus, reducing the power
consumption due to the transmission. The higher that
the data compression ratio is, the more power can be
saved when transmitting the data.

The existing literature discusses the performance

of the data compressed using different data types,

such as text, images and others. In this work, we

compare the performance of the data compression that

is commonly used for WSNs.

In this study, two different data compression methods

were analysed, namely the Huffman and Lempel-Ziv

Welch (LZW) algorithms. The aim of the work is to

identify the method that could results in the highest

compression ratio and performance.

This study is organized as follows. Section II discusses

the existing work on data compression techniques. In

Section III, the Huffman and LZW data compression

algorithms are discussed. Section IV highlights the results

obtain in this study. Lastly, Section V concludes the paper.

1.1. Literature Review

In (Wang, 2011), a comparison between static and

dynamic Huffman coding techniques was made. The

temperature and humidity data were measured using a

sensor and converted into binary using a 14-bit ADC. The

results show that static Huffman has a better compression

ratio than dynamic Huffman. Due to its simple algorithm,

static Huffman can compute faster and compress better.

Paper (Shahbahrami, Bahrampour, Rostami and

Mobarhan, 2011) discusses the comparison between the

Huffman and arithmetic data compression algorithms using

The final publication is available via http://thescipub.com/pdf/10.3844/ajassp.2014.119.126

The final publication is available via http://thescipub.com/pdf/10.3844/ajassp.2014.119.126

American Journal of Applied Sciences 11 (1): pp119-126, 2014

End Date

2 Science Publications

AJAS

image files. From the experimental results, as the size of the

image file increases, the compression ratio also increases.

The time taken for the Huffman algorithm to execute is

shorter compared to the arithmetic algorithm. To compress

a 128128 image size, Huffman takes 0.14 sec while

arithmetic coding requires 0.45 sec to complete the task.

The paper by (Patil and Kulat, 2011) analysed image

and text data using Huffman and Run Length Encoding

(RLE). It analysed the compression ratio, time elapsed,

mean square error (MSE) and peak signal to noise ratio

(PNSR). The compression ratio for the Huffman

algorithm is higher than for RLE due to its compact

compress. But RLE achieved the fastest compression

time due to its simple algorithm.

A survey was done in (Shanmugasundaram and
Lourdusamy, 2011) to compare the performance between
different types of data compression. Different file types
and sizes were used in this research, consisting of
various benchmark text files. From the paper, the LZW
algorithm performs slightly better than the Huffman
algorithm, with each of them consuming 4.9 and 5.7 bits
per character, respectively.

Paper (Kodituwakku, S.R. and U.S. Amarasinghe,
2010) focuses on the compression of multiple sizes of
text data. For the LZW, the compression ratio ranges
between 30 and 60% and this ratio decreases as the file
size increases. This is because larger text data will create

longer LZW code. For Huffman coding, the compression
ratio is obtained between 58 and 67%. The compression
time for the LZW algorithm is larger than the Huffman
algorithm because the scanning window or the LZW
algorithm takes more time in order to fill up the
dictionary inside the LZW. Although the compression

time is longer, it takes a shorter time to decompress
using the LZW algorithm than the Huffman algorithm.
This is because the decoding process only needs to
decode the data by matching the LZW code with the
code inside the library.

While the existing method focuses more on text and

image data, this study will focus especially on data that

are commonly used in WSN, such as temperature,

humidity and ECG. In the next section, the data

compression that is used in this study will be elaborated.

2. MATERIALS AND METHODS

This section describes the work done for this study.

First, it will discuss the Huffman algorithm, followed by

a discussion of the LZW algorithm. In addition, the

compression performance for a combined Huffman-

LZW algorithm will also be discussed.

The Huffman encoder uses the instruction’s

frequency to determine the length of the codewords that

replace the original ones. The frequently used

instructions use shorter codewords as opposed to the less

frequent ones (Bonny and Henkel, 2010). Figure 1 and

2 shows the flow chart for the Huffman encoder and

decoder, respectively.

Unlike Huffman coding, the LZW encoder replaces

strings of characters with single codes. Compared to the

encoder’s input strings, the LZW codes are smaller

(Asgarizadeh and Abouei, 2013). LZW builds a ‘dictionary’

that contains words or parts of words of a datum. When the

data needs to be decompressed, it needs to refer to the

dictionary, which in turn represents the LZW code for that

word (Shahbahrami et al., 2011). Figure 3 and 4 shows the

LZW encoder and decoder flow charts, respectively.
For double compression, the combination of Huffman

followed by LZW (HLZ) and LZW followed by
Huffman (LZH) were used. Double compression is
investigated in this work to measure that performance
when compressing different types of data.

In this work, there are four types of input data that are
used, namely temperature, humidity, ECG and text. The
temperature data were taken from the Average Daily
Temperature Archive, University of Dayton (Kissock,
2007). The file contains daily temperatures from 1st
January 1995 until 31 December 2012. Figure 5 shows
some samples of the temperature data in Fahrenheit (F).
For the humidity data, this was taken from the National
Environmental Satellite, Data and Information Service
(Dan, 2008). It is a monthly humidity record throughout
the year 2002.

End Date

3 Science Publications

AJAS

Fig. 1. Huffman encoder flow chart

End Date

4 Science Publications

AJAS

Fig. 2. Huffman decoder flow chart

Fig. 3. LZW encoder flow chart

End Date

5 Science Publications

AJAS

Fig. 4. LZW decoder flow chart

Fig. 5. Temperature data

Fig. 6. Humidity data

(a)

End Date

6 Science Publications

AJAS

(b)

Fig. 7. (a) ECG data (b) Waveform for the ECG data

Samples of the humidity are shown in Fig. 6. The

numbers represent a percentage measure of the amount

of moisture in the air compared to the maximum amount

of moisture that the air can hoard at the same

temperature and pressure.

PhysioBank is a website where the ECG data in this

work were obtained (PhysioNet, 2011). The data chosen

concerned an apnoea patient, a disorder manifest by pauses

in breathing or shallow breaths during sleep. (NIH, 2012)

Fig. 7 (a) shows the ECG data which is relatively unique

and has its own pattern. Fig. 7 (b) shows the waveform for

the ECG data used in this work, where the x axis is the time

in 10
2

 sec and the y axis is the amplitude in mV. Lastly, the

text file sample was taken from the Mother Goose Club’s

website (Sockeye Media LLC, 2013).

3. RESULTS

This section discusses the compression results using

data that are typical for WSNs, such as temperature,

humidity, ECG and words. For each type of data, four

different sizes are evaluated.

Table 1 shows the compression results for various

data with different sizes compressed using Huffman,

LZW, HLZ and LZH algorithms. From Table 1, the

Huffman algorithm performs good compression for

temperature, humidity, ECG and text data. For

temperature, the highest saving percentage is 47% for

data size of 200 bits before compression. The percentage

decreases as the data size increases. A similar pattern is

observed for the humidity and ECG data. As compared

to Huffman, the LZW performs poorly for temperature,

humidity and ECG data. LZW performs well for text

data sizes of 800 bits, with a saving percentage of 37%

being observed. The saving is observed for LZW as the

data size increases. For double compression, the LZH

performs better compared to the HLZ.

Table 2 shows the result of the time taken to

compress and decompress various data using the

Huffman, LZW, HLZ and LZH algorithms. For the

single data compressions, the average time taken to

compress all four types of data for the Huffman is less

than for the LZW. The Huffman algorithm only takes

0.398 sec, while LZW algorithm takes 1.532 sec. For

the decompression part, the average time taken for the

LZW is less than for the Huffman for all four types of

data. The LZW decoder takes 0.102 sec, while the

Huffman decoder takes 0.357 sec.

End Date

7 Science Publications

AJAS

Table 1. Huffman, LZW, HLZ AND LZH compression performance

 Size before Size after compression (Bits) Compression ratio Saving (%)

 compression -- --- --

Data type (Bits) Huffman LZW HLZ LZH Huffman LZW HLZ LZH Huffman LZW HLZ LZH

Temperature 200 106 200 296 106 0.53 1.00 1.48 0.53 47.00 0.00 -48.00 47.00

 400 247 400 544 247 0.62 1.00 1.36 0.62 38.25 0.00 -36.00 38.25

 600 398 592 776 396 0.66 0.99 1.30 0.66 34.00 1.33 -29.33 34.00
 800 550 784 992 546 0.69 0.98 1.24 0.68 31.25 2.00 -24.00 31.75

Humidity 200 102 200 272 102 0.51 1.00 1.36 0.51 49.00 0.00 -36.00 49.00

 400 240 400 536 240 0.60 1.00 1.34 0.60 40.00 0.00 -34.00 40.00

 600 363 584 720 363 0.61 0.97 1.20 0.61 39.50 2.67 -20.17 39.50

 800 485 752 896 488 0.61 0.94 1.12 0.61 39.38 6.00 -12.00 39.00

ECG 200 92 184 264 88 0.46 0.92 1.32 0.44 54.00 8.00 -32.00 56.00
 400 243 384 536 237 0.61 0.96 1.34 0.59 39.25 4.00 -34.00 40.75

 600 411 584 800 404 0.69 0.97 1.33 0.67 31.50 2.67 -33.33 32.67

 800 555 776 1000 549 0.69 0.97 1.25 0.69 30.63 3.00 -25.00 31.38
Text 800 367 504 728 328 0.46 0.63 0.91 0.41 54.13 37.00 9.00 59.00

 1200 567 696 1000 491 0.47 0.58 0.83 0.41 52.75 42.00 16.67 59.08

 1600 753 840 1264 626 0.47 0.53 0.79 0.39 52.94 47.50 21.00 60.88
 2000 936 960 1480 743 0.47 0.48 0.74 0.37 53.20 52.00 26.00 62.85

 Average 400.94 552.50 756.50 372.13 0.57 0.87 1.18 0.55 42.92 13.01 -18.20 45.07

Table 2. Huffman, LZW, HLZ AND LZH compressions time

 Time taken (sec)

 Size before Huffman LZW HLZ LZH

 Compression ------------------------- ----------------------- -------------------------- -------------------------------

Data type (Bits) Encoder Decoder Encoder Decoder Encoder Decoder Encoder Decoder

Temperature 200 0.143 0.073 0.360 0.027 0.733 0.143 0.492 0.053

 400 0.790 0.183 0.848 0.119 2.166 0.916 1.040 0.209

 600 0.481 0.669 1.298 0.098 3.568 4.587 1.684 0.353

 800 0.313 1.225 2.102 0.120 3.950 6.957 2.009 0.445

Humidity 200 0.207 0.065 0.509 0.029 0.790 0.163 0.543 0.059

 400 0.341 0.569 1.506 0.059 4.098 0.518 0.783 0.231

 600 0.230 0.279 1.863 0.096 4.036 3.838 1.473 0.229

 800 0.648 0.505 1.805 0.292 2.923 6.339 3.181 0.558

ECG 200 0.187 0.072 0.748 0.043 1.237 0.163 1.156 0.058

 400 0.586 0.300 1.151 0.068 3.814 0.531 1.429 0.137

 600 0.650 0.403 3.284 0.084 4.923 4.317 2.362 0.311

 800 0.506 0.943 2.581 0.191 3.132 7.605 4.171 0.582

Text 200 0.178 0.053 0.697 0.055 0.702 0.147 0.823 0.054

 400 0.222 0.135 1.730 0.075 3.294 0.341 1.462 0.098

 600 0.447 0.106 1.984 0.107 4.316 0.629 2.424 0.175

 800 0.446 0.136 2.046 0.171 3.837 3.263 1.926 0.372

 Average 0.398 0.357 1.532 0.102 2.970 2.529 1.685 0.245

4 . DISCUSSION

From the results discussed in the previous section, it

can be seen that Huffman performs better for

temperature, humidity and ECG data. The compression

performance decreases as the data size increases. This

pattern is observed because as the branches increases, the

Huffman code for each of the branches also increases.

Therefore, the longer the Huffman branches, the longer

the Huffman code. Thus, the saving percentage

decreases.

On the other hand, LZW perform better for text

data.This is because the algorithm process the data bit-

by-bit that increase the repetition of words that match

with the words inside the library. For temperature,

humidity and ECG type of data, they are already

arranged in a group of bits. Thus, processing them bit-

by-bit will result in an increase in output bits for the

LZW.

End Date

8 Science Publications

AJAS

For double compression, the LZH performs better
compared to the HLZ. HLZ gives lower compression

results for all data types because after the Huffman
algorithm, the data has been arranged into a certain pattern
that is not optimized for the LZW library. However, the
LZH algorithm gives better compression since the output
from LZW contains a highly repetitive value. This
repeated value is suitable for Huffman compressions.

In terms of computational speed, the Huffman
algorithm requires less time to encode the data
compared to other algorithms.This is due to the
Huffman algorithm is being less complex than the
LZW algorithm, which means it takes less time to
compress the data. Compare to other algorithm, LZW

algorithm takes lesser time to decode the data. This is
because the LZW decoder only needs to scan the LZW
code through the library, whereas the Huffman decoder
reads the input bit-by-bit, which is slower.

Table 3. Compression ratio comparison for different

compression methods.

(Wang,

2011)

(Nakaya
and

Nakamura,

2013)

(Patil
and

Kulat,

2012)

(Izadian
and

Manzuri,

2013)

Our

work

Temperature 0.38 - - -
0.53
to

0.69

Humidity 0.36 - - -
0.51
to

0.61

ECG - 0.32 - -

0.46

to
0.69

Text - -
0.43 to

0.81
0.55 to

0.63

0.46

to

0.47

Table 3 compares our results with other published

papers. Since there is no papers that compare the

temperature, humidity, ECG and text data within a single

paper, the comparison is done based on several published

papers. Data compression on text using Huffman is

compared against the work done by Patil and Kulat

(2012) and Izadian and Manzuri (2013). Wang (2011)

performs Huffman data compression on temperature and

humidity. However, rather than using the actual value,

compression on the difference between two data was

performed. Nakaya and Nakamura (2013) perform ECG

compression using estimation on R-R interval prediction.

From the table, for text data, our work shows a

slightly better compression ratio as compared to Patil and

Kulat (2012) and Izadian and Manzuri (2013). This

variation could be the result of using different test

benches during the experiment. Higher repetitive words

can result in a lower compression ratio. In addition,

using data specific algorithms to compress data will

result in better compression efficiency as shown by

Wang (2011) and Nakaya and Nakamura (2013). This is

obvious since the algorithm will take into account the

specific features of the data during compression.

However, for general purpose compression as needed in

wireless sensor nodes, the table shows that the Huffman

algorithm could give a satisfactory result for the test data

with a 0.57 average of the compression ratio.

5. CONCLUSION

This study analyses the compression performance of
the Huffman algorithm and the LZW algorithm using
various input data commonly measured by a wireless
sensor node, namely temperature, humidity, ECG and
text data. For the given tested data, the Huffman
algorithm shows better performance when compared
to the LZW in terms of compression ratio and
computation time. From the experiments, the Huffman
algorithm is able to achieve an average of a 43% data
reduction. For double compression, the LZH could
provide up to 9% improvement in terms of data
reduction, but at the cost of an increase in the
computation time. In the future, this work will further
study various techniques on WSN data representation
to further increase the Huffman algorithm efficiency.

6. REFERENCES

Asgarizadeh, H. and J. Abouei. 2013. An Energy-

Efficient SD-Based LZW Algorithm in Dynamic

Wireless Sensor Networks. Electrical Engineering

(ICEE) 2013 21st Iranian Conference. 1(6): 14-16.

Bonny, T. and J. Henkel. 2010. Huffman-Based Code

Compression Techniques for Embedded Processors.

ACM Trans. Des. Auto. Electron. Syst. New York,

USA. 15(4): 31:1-31:37.

Dan, D., 2008. National Environmental Satellite, Data

and Information Service. Retrieved June 15, 2011.

End Date

9 Science Publications

AJAS

http://www.ncdc.noaa.gov/oa/climate/online/ccd/avg

rh.html

Izadian, R. and M. T. Manzuri, 2013. Energy

Consumption Text and Image Data Compression in

WSNs, Innovations and Advances in Computer,

Information, Systems Sciences, and Engineering

Lecture Notes in Electrical Engineering. 152:683-

695.

Kissock, K., 2007. International Sites, Average Daily

Temperature Archive. Retrieved January 1, 2013.

http://academic.udayton.edu/kissock/http/Weather/ci

tylistWorld.htm .

Kodituwakku, S.R. and U.S. Amarasinghe, 2010.

Comparison of lossless data compression algorithms

for text data. Indian J. Comput. Sci. Eng., 1: 416-

425.

Li, W., F.C. Delicato and A.Y. Zomaya. 2013. Adaptive

Energy-Efficient Scheduling for Hierarchical

Wireless Sensor Networks. ACM Trans. Sen. Netw.

New York, USA. 9(3): 33:1-33:34.

Nakaya, S. and Y. Nakamura, 2013. Adaptive Sensing o

ECG Signals using R-R Interval Prediction,

Engineering in Medicine and Biology Society

(EMBC), 2013 Annual International Conference of

th e IEEE, Osaka. pp:9-12.

NIH, 2012. National Institute of Health. Retrieved April

7, 2013.

http://www.nhlbi.nih.gov/health/healthtopics/

topics/sleepapnea

Patil R. B. and K. D. Kulat, 2012. Image and Text

Compression Using Dynamic Huffman and RLE

Coding. Proceedings of the International Conference

on Soft Computing for Problem Solving (SocProS

2011), 131:701-708.

PhysioNet, 2011. PhysioBank ATM, PhysioNet.

Retrieved May 19, 2012.

http://www.physionet.org/cgi-bin/atm/ATM

Shahbahrami, A., R. Bahrampour, M. Rostami and M. A.

Mobarhan, 2011. Evaluation of Huffman and

Arithmetic Algorithms for Multimedia Compression

Standards. International Journal of Computer

Science, Engineering and Applications (IJCSEA),

1(4): 34-47.

Shanmugasundaram, S. and R. Lourdusamy, 2011. A

comparative study of text compression algorithms.

Int. J. Wisdom Based Computing, 1: 68-76.

Sockeye Media LLC., 2013. Rhymes, Mother Goose

Club. Retrieved Mac 13, 2013.

http://www.mothergooseclub.com/rhymes_parent.ph

p?id=160

Wang, W., 2011. Analyzing Algorithm for Monitoring

Greensward in Golf Course. Computer Science and

Automation Engineering (CSAE), 2011 IEEE

International Conference. 3:493-497.

http://www.ncdc.noaa.gov/oa/climate/online/ccd/avgr
http://www.ncdc.noaa.gov/oa/climate/online/ccd/avgr
http://www.nhlbi.nih.gov/health/healthtopics/

