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Abstract— This paper is a presentation of the existing design and 

review of hardware for UMHexagonS based motion estimation for 

H.264/AVC video compression. Four existing motion estimation 

architectures that implement UMHexagonS are presented, 

analysed, and compared to show the area needing future 

improvements. The presented architectures are also compared 

against our proposed architecture. The results are compared in 

terms of gate count and throughput with emphasis on throughput 

as it shows the speed of the architecture. The proposed architecture 

gives a promising result compared with some of the reviewed 

architecture. It shows an improvement of 91% compared to the full 

search architecture and 20% compared to a basic UMHexagonS 

architecture. 
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I.  INTRODUCTION 

H.264 has been approved and finalized as International 
Standard 14496-10 (MPEG-4 Part 10) Advanced Video Coding 
(AVC) by ISO/IEC and as Recommendation H.264 by ITU-T 
on May 2003 [1]. It became the main standard used for good 
video quality especially for high-resolution video. It has been 
used in the latest video recording equipment, portable video 
recording devices, and smartphones. The high popularity of the 
H.264 standard is because of its ability to produce better video 
quality compared to the older video compression standards 
while minimizing the bitrate with a small increase in 
computational effort. Bitrate saving of 25% to 45% can be 
achieved compared to MPEG-4 Advanced Simple Profile 
(ASP) and a saving of 50% to 70% compared with MPEG-2 
[2]. 

For the H.264/AVC encoder, motion estimation (ME) plays 
a crucial part in determining the quality of the compression in 
terms of picture quality, bitrate, or power consumption. For an 
H.264 encoder, 74.29% (234 GIPS) of computation and 
77.49% (365 GByte/s) of memory bandwidth are required for 
ME purposed as discussed in [3]. From an experimental result 
in [4], it shows that from the whole H.264 encoding time, 60% 
is consumed by ME for one reference frame and approximately 
80% for five reference frames.  

Several architectures for H.264 have been proposed in the 
past to implement the capabilities of the H.264 encoder fully. 

In this paper, the existing architecture will be reviewed and 
compared to analyse the best H.264 architecture 
implementation. 

II. LITERATURE REVIEW 

In this section, four ME architectures will be discussed. The 
selections of the architectures are based on reported 
implementation of UMHexagonS architectures. 

The architecture in [5] makes use of its ability to process 
five reference frames in real time. The architecture is shown in 
Figure 1. It contains six processing units (PU), five buffers 
16x15 bytes each, one reference block memory of 16x16 bytes, 
one 4x16 reference block buffer and a comparing unit. It 
requires 32 bytes of memory bandwidth. The reference 
memory block cells are made of shift registers so that the 
values can be passed to different directions, depending on the 
horizontal/vertical (H/V) switch. The PU in Figure 2 contains 
16 processing elements (PE), which are divided into 4 groups, 
12 delay registers, and 37 adders. The outputs of each group of 
PEs are then summed using an adder tree, which gives an 
output of SAD values that are sent to the comparing unit for 
calculating the motion vectors. The comparing unit contains 41 
comparing elements to compute all 41 SAD outputs. The 
buffers consist of 16x15 byte shift registers used to hold the 
overlap values of the successive candidate blocks that are 
processed by the same PU. This reduces the external memory 
access. 

The architecture for UMHexagonS proposed in [6] focuses 

 
Figure 1: Past architecture in [5] 
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on a good tradeoff between small gate counts and high 
throughput. Figure 3 shows the block diagram of the said 
hardware architecture. It consists of Dual Port SRAM modules 
(DPSRAM), 16 simple buffers, 16 basic search units (BSU), a 
comparator, and a make motion vector (make_mv). The 
DPSRAM is used to store the current and previous frame. A 
BSU contains 16 (4x4) PE to calculate the SAD of one 4x4 
block at a time to manage the variable block matching 
algorithm in UMHexagonS. 

The proposed architecture in [7] uses a modified 
UMHexagonS algorithm known as Simplified Unified Multi 
Hexagon (SUMH) [8] to outperform the UMHexagonS. The 
top-level of the architecture is shown in Figure 4. The 
architecture is composed of search window (SW) memory, 
current MB (CMB) memory, an address generation unit 
(AGU), a control unit, a block of processing units (PUs), a 
SAD combination tree, a comparison unit, and a register for 
storing the 41 minimum SADs and their associated motion 
vectors. There are two internal memories in this architecture, 
the SW memory and the CMB memory where it uses dual port 
block RAMS (BRAMS) to store the search window and current 
MB, respectively. The SW memory consists of N 16x16 
BRAMS for N numbers of MB candidates, where N depends 
on the desired search range. The PU contains 16 PE each as 
shown in Figure 5. Each PU will calculate 16 4x4 SADs for 
one candidate of MB. All 16 4x4 SADs will then further 
combine in the SAD combination tree to yield 41 SADs for 
each MB candidate as shown in Figure 6. 

 

 

 
Figure 2: Process Unit of the past architecture in [5] 

 

 
Figure 3: Past architecture in [6] 

 

 
Figure 4: Past architecture in [7] 

 

 
Figure 5: Process Unit of the past architecture in [7] 

 

 
Figure 6: SAD Combination Tree of the past architecture in 

[7] 

 



III. PROPOSED ARCHITECTURE 

In this section, the proposed architecture will be discussed. 
The proposed architecture is intended to implement efficient 
ME architecture that has higher flexibility for future 
improvement. The architecture utilises a direct implementation 
of the UMHexagonS to the architecture but using a parallel 
architecture. The top level of the proposed architecture is 
shown in Figure 7. It contains six main parts; a Control Unit, a 
Current Block Buffer (CBB), a Reference Block Buffer (RBB), 
a Processing Unit (PU), an Adder Tree, and a Comparison 
Unit. The control unit controls the entire unit to execute the 
algorithm. Details of the module operation will be explained in 
the following paragraph.  

Both the Current Block Buffer and the Reference Block 
Buffer have the same architecture except for a different size. 
The CBB uses a 1024 byte SRAM to store a 32x32 search 
windows area while the RBB uses a 256 byte SRAM to store a 
16x16 reference block. The data is stored in the related buffer 
before it is sent to the Processing Unit (PU). 

The PU contains 256 Process Elements (PE), as in Figure 8. 
Each PE calculates a single absolute difference between the 
current and reference block. The PU will produce 256 absolute 
differences between a 16x16 area current block and a 16x16 
area reference block. All 256 outputs of the PU will then be 
sent to the Adder Tree to calculate the sum of absolute 
differences (SAD). 

The Adder Tree will calculate the SAD depending on the 
location and the size of the macroblock. It will generate 41 
SAD outputs for 6 different macroblock sizes. By using all 256 
absolute differences from the PU, the Adder Tree will calculate 
a total 16 4x4 macroblock SADs. With the SAD of the 4x4 
macroblock, the Adder Tree will then calculate the sum for 2 
more sizes, 8x4 and 4x8 macroblock with 8 SADs each. A total 
of 4 8x8 macroblock SADs will then be obtained from the 
SAD of an 8x4 or 4x8 macroblock. The 4 8x8 macroblock 
SADs will be used to calculate the sum of a 16x8 and 8x16 
macroblock with 2 SADs each. Finally, the biggest macroblock 
SAD is calculated using either a 16x8 or an 8x16 macroblock, 
which makes 41 SAD outputs. The architecture of the Adder 
Tree is shown in Figure 9. The architecture for the adder tree is 
designed so that it will be able to provide all 41 possible 
outputs of different sizes and addresses. 

Each of 41 SAD outputs will then be compared to the 
previous SAD value. The comparison unit is not only used to 
compare the value, but the lowest SAD value will also be kept 
temporarily for the next comparison. At the same time, the 
lowest SAD address will be kept as important data during 
motion vector (MV) calculation. 

IV. RESULT AND DISCUSSION 

Table 1 shows the comparison result of the hardware 
architecture. The result is compared in terms of gate count and 
throughput (block/cycles). The full search is given to show 
difference between full search and fast search (UMHexagonS). 
From the table, full search yields the lowest throughput 
(1/16384) as it searches all locations instead of only possible 
candidates. UMHexagonS architecture in [5] is designed to 
implement five reference frames while other architectures 
apply a single reference. To make it easier to compare, all of 
the results in this section will be based on a single reference 
frame. With single frame implementation, UMHexagonS [5] 
would give a throughput of 1/490. UMHexagonS [6] is 
designed mainly to describe the efficiency of VLSI architecture 
for UMHexagonS. Therefore, it can be a good reference for 
UMHexagonS architecture. It gives a throughput of 1/1792. As 
for SUMH [7], it is designed based on modified UMHexagonS 
and it yields a throughput of 1/405. 

The proposed architecture would take three cycles to obtain 
the minimum SAD for the given point. The UMHexagonS 
algorithm has approximately 136 search points in a complete 
algorithm with extended hexagon search done 3 times. So 
136x3=405 cycles per complete block including the initiation 
of the buffer unit, which takes 1024 cycles, the overall cycle 
needed will be 405+1024=1429.  

 
Figure 7: Proposed architecture 

 
Figure 8: The Diagram of PU 

 

Architecture No. of PEs Throughput 

(blocks/cycle) 

Gate 

count 

Full Search [6] 256 1/16384 350k 

UMHexagonS[5] 96 1/490 NA 

UMHexagonS[6] 256 1/1792 390k 

SUMH[7] 256(Nx16) 1/405 388k 

This paper 256 1/1429 NA 

Table 1: Comparison hardware architecture 

 



The overall result is shown in Table 1. From the results, we 
can see that the full search [6] has the lowest gate count 
compared to other algorithms. However, the most important 
criterion for ME architecture is the throughput. This is 
represented by the number of cycles needed to complete a 
block. In terms of throughput, the SUMH [7] gives the best 
result. The proposed architecture shows a better result 
compared to the full search [6] by 91%. In term of other 
UMHexagonS architecture, our proposed architecture 
outperforms UMHexagonS [6] by 20%. 

V. CONCLUSION  

In this paper, the existing UMHexagonS architecture has 
been reviewed and compared. The SUMH architecture shows 
the best result compared to all reviewed architectures. The 
proposed architecture shows promising results where it 
outperforms the full search architecture throughput by 91% and 
UMHexagonS [6] by 20%. In the next works, we will improve 
the proposed architecture, especially in the buffer module, as 
this is the part that consumes most of the clock cycles in the 
proposed architecture. 
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