
UMHexagonS Based Motion Estimation

Architecture Comparison

Arief Affendi Juri

School of Microelectronic Engineering

UniMAP

Perlis, Malaysia

s0930110441@studentmail.unimap.edu.my

Asral Bahari Jambek

School of Microelectronic Engineering

UniMAP

Perlis, Malaysia

asral@unimap.edu.my

Abstract— This paper is a presentation of the existing design and

review of hardware for UMHexagonS based motion estimation for

H.264/AVC video compression. Four existing motion estimation

architectures that implement UMHexagonS are presented,

analysed, and compared to show the area needing future

improvements. The presented architectures are also compared

against our proposed architecture. The results are compared in

terms of gate count and throughput with emphasis on throughput

as it shows the speed of the architecture. The proposed architecture

gives a promising result compared with some of the reviewed

architecture. It shows an improvement of 91% compared to the full

search architecture and 20% compared to a basic UMHexagonS

architecture.

Keywords-component; UMHexagonS; Motion Estimation;

architecture; H.246/AVC

I. INTRODUCTION

H.264 has been approved and finalized as International
Standard 14496-10 (MPEG-4 Part 10) Advanced Video Coding
(AVC) by ISO/IEC and as Recommendation H.264 by ITU-T
on May 2003 [1]. It became the main standard used for good
video quality especially for high-resolution video. It has been
used in the latest video recording equipment, portable video
recording devices, and smartphones. The high popularity of the
H.264 standard is because of its ability to produce better video
quality compared to the older video compression standards
while minimizing the bitrate with a small increase in
computational effort. Bitrate saving of 25% to 45% can be
achieved compared to MPEG-4 Advanced Simple Profile
(ASP) and a saving of 50% to 70% compared with MPEG-2
[2].

For the H.264/AVC encoder, motion estimation (ME) plays
a crucial part in determining the quality of the compression in
terms of picture quality, bitrate, or power consumption. For an
H.264 encoder, 74.29% (234 GIPS) of computation and
77.49% (365 GByte/s) of memory bandwidth are required for
ME purposed as discussed in [3]. From an experimental result
in [4], it shows that from the whole H.264 encoding time, 60%
is consumed by ME for one reference frame and approximately
80% for five reference frames.

Several architectures for H.264 have been proposed in the
past to implement the capabilities of the H.264 encoder fully.

In this paper, the existing architecture will be reviewed and
compared to analyse the best H.264 architecture
implementation.

II. LITERATURE REVIEW

In this section, four ME architectures will be discussed. The
selections of the architectures are based on reported
implementation of UMHexagonS architectures.

The architecture in [5] makes use of its ability to process
five reference frames in real time. The architecture is shown in
Figure 1. It contains six processing units (PU), five buffers
16x15 bytes each, one reference block memory of 16x16 bytes,
one 4x16 reference block buffer and a comparing unit. It
requires 32 bytes of memory bandwidth. The reference
memory block cells are made of shift registers so that the
values can be passed to different directions, depending on the
horizontal/vertical (H/V) switch. The PU in Figure 2 contains
16 processing elements (PE), which are divided into 4 groups,
12 delay registers, and 37 adders. The outputs of each group of
PEs are then summed using an adder tree, which gives an
output of SAD values that are sent to the comparing unit for
calculating the motion vectors. The comparing unit contains 41
comparing elements to compute all 41 SAD outputs. The
buffers consist of 16x15 byte shift registers used to hold the
overlap values of the successive candidate blocks that are
processed by the same PU. This reduces the external memory
access.

The architecture for UMHexagonS proposed in [6] focuses

Figure 1: Past architecture in [5]

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future

media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or

redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. Digital Object Identifier :

10.1109/ICIAS.2012.6306221

2012 4th International Conference on Intelligent and Advanced Systems (ICIAS)

http://dx.doi.org/10.1109/ICIAS.2012.6306221

on a good tradeoff between small gate counts and high
throughput. Figure 3 shows the block diagram of the said
hardware architecture. It consists of Dual Port SRAM modules
(DPSRAM), 16 simple buffers, 16 basic search units (BSU), a
comparator, and a make motion vector (make_mv). The
DPSRAM is used to store the current and previous frame. A
BSU contains 16 (4x4) PE to calculate the SAD of one 4x4
block at a time to manage the variable block matching
algorithm in UMHexagonS.

The proposed architecture in [7] uses a modified
UMHexagonS algorithm known as Simplified Unified Multi
Hexagon (SUMH) [8] to outperform the UMHexagonS. The
top-level of the architecture is shown in Figure 4. The
architecture is composed of search window (SW) memory,
current MB (CMB) memory, an address generation unit
(AGU), a control unit, a block of processing units (PUs), a
SAD combination tree, a comparison unit, and a register for
storing the 41 minimum SADs and their associated motion
vectors. There are two internal memories in this architecture,
the SW memory and the CMB memory where it uses dual port
block RAMS (BRAMS) to store the search window and current
MB, respectively. The SW memory consists of N 16x16
BRAMS for N numbers of MB candidates, where N depends
on the desired search range. The PU contains 16 PE each as
shown in Figure 5. Each PU will calculate 16 4x4 SADs for
one candidate of MB. All 16 4x4 SADs will then further
combine in the SAD combination tree to yield 41 SADs for
each MB candidate as shown in Figure 6.

Figure 2: Process Unit of the past architecture in [5]

Figure 3: Past architecture in [6]

Figure 4: Past architecture in [7]

Figure 5: Process Unit of the past architecture in [7]

Figure 6: SAD Combination Tree of the past architecture in

[7]

III. PROPOSED ARCHITECTURE

In this section, the proposed architecture will be discussed.
The proposed architecture is intended to implement efficient
ME architecture that has higher flexibility for future
improvement. The architecture utilises a direct implementation
of the UMHexagonS to the architecture but using a parallel
architecture. The top level of the proposed architecture is
shown in Figure 7. It contains six main parts; a Control Unit, a
Current Block Buffer (CBB), a Reference Block Buffer (RBB),
a Processing Unit (PU), an Adder Tree, and a Comparison
Unit. The control unit controls the entire unit to execute the
algorithm. Details of the module operation will be explained in
the following paragraph.

Both the Current Block Buffer and the Reference Block
Buffer have the same architecture except for a different size.
The CBB uses a 1024 byte SRAM to store a 32x32 search
windows area while the RBB uses a 256 byte SRAM to store a
16x16 reference block. The data is stored in the related buffer
before it is sent to the Processing Unit (PU).

The PU contains 256 Process Elements (PE), as in Figure 8.
Each PE calculates a single absolute difference between the
current and reference block. The PU will produce 256 absolute
differences between a 16x16 area current block and a 16x16
area reference block. All 256 outputs of the PU will then be
sent to the Adder Tree to calculate the sum of absolute
differences (SAD).

The Adder Tree will calculate the SAD depending on the
location and the size of the macroblock. It will generate 41
SAD outputs for 6 different macroblock sizes. By using all 256
absolute differences from the PU, the Adder Tree will calculate
a total 16 4x4 macroblock SADs. With the SAD of the 4x4
macroblock, the Adder Tree will then calculate the sum for 2
more sizes, 8x4 and 4x8 macroblock with 8 SADs each. A total
of 4 8x8 macroblock SADs will then be obtained from the
SAD of an 8x4 or 4x8 macroblock. The 4 8x8 macroblock
SADs will be used to calculate the sum of a 16x8 and 8x16
macroblock with 2 SADs each. Finally, the biggest macroblock
SAD is calculated using either a 16x8 or an 8x16 macroblock,
which makes 41 SAD outputs. The architecture of the Adder
Tree is shown in Figure 9. The architecture for the adder tree is
designed so that it will be able to provide all 41 possible
outputs of different sizes and addresses.

Each of 41 SAD outputs will then be compared to the
previous SAD value. The comparison unit is not only used to
compare the value, but the lowest SAD value will also be kept
temporarily for the next comparison. At the same time, the
lowest SAD address will be kept as important data during
motion vector (MV) calculation.

IV. RESULT AND DISCUSSION

Table 1 shows the comparison result of the hardware
architecture. The result is compared in terms of gate count and
throughput (block/cycles). The full search is given to show
difference between full search and fast search (UMHexagonS).
From the table, full search yields the lowest throughput
(1/16384) as it searches all locations instead of only possible
candidates. UMHexagonS architecture in [5] is designed to
implement five reference frames while other architectures
apply a single reference. To make it easier to compare, all of
the results in this section will be based on a single reference
frame. With single frame implementation, UMHexagonS [5]
would give a throughput of 1/490. UMHexagonS [6] is
designed mainly to describe the efficiency of VLSI architecture
for UMHexagonS. Therefore, it can be a good reference for
UMHexagonS architecture. It gives a throughput of 1/1792. As
for SUMH [7], it is designed based on modified UMHexagonS
and it yields a throughput of 1/405.

The proposed architecture would take three cycles to obtain
the minimum SAD for the given point. The UMHexagonS
algorithm has approximately 136 search points in a complete
algorithm with extended hexagon search done 3 times. So
136x3=405 cycles per complete block including the initiation
of the buffer unit, which takes 1024 cycles, the overall cycle
needed will be 405+1024=1429.

Figure 7: Proposed architecture

Figure 8: The Diagram of PU

Architecture No. of PEs Throughput

(blocks/cycle)

Gate

count

Full Search [6] 256 1/16384 350k

UMHexagonS[5] 96 1/490 NA

UMHexagonS[6] 256 1/1792 390k

SUMH[7] 256(Nx16) 1/405 388k

This paper 256 1/1429 NA

Table 1: Comparison hardware architecture

The overall result is shown in Table 1. From the results, we
can see that the full search [6] has the lowest gate count
compared to other algorithms. However, the most important
criterion for ME architecture is the throughput. This is
represented by the number of cycles needed to complete a
block. In terms of throughput, the SUMH [7] gives the best
result. The proposed architecture shows a better result
compared to the full search [6] by 91%. In term of other
UMHexagonS architecture, our proposed architecture
outperforms UMHexagonS [6] by 20%.

V. CONCLUSION

In this paper, the existing UMHexagonS architecture has
been reviewed and compared. The SUMH architecture shows
the best result compared to all reviewed architectures. The
proposed architecture shows promising results where it
outperforms the full search architecture throughput by 91% and
UMHexagonS [6] by 20%. In the next works, we will improve
the proposed architecture, especially in the buffer module, as
this is the part that consumes most of the clock cycles in the
proposed architecture.

REFERENCES

[1] “Draft ITU-T Recommendation and Final Draft International Standard
of Joint Video Specification (ITUT Rec. H.264 | ISO/IEC 14496-10

AVC),” in Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T
VCEG, JVTG050r1, May 2003.

[2] T. Wiegand, H. Schwarz, A. Joch, F. Kossentini, and G. J. Sullivan,
“Rate-constrained coder control and comparison of video coding
standards,” IEEE Trans. Circuits Syst. Video Technol., vol. 13, no. 7,
pp. 688–703, Jul. 2003.

[3] T.-C. Chen, S.-Y. Chien, Y.-W. Huang, C.-H. Tsai, C.-Y. Chen, T.-W.
Chen, and L.-G. Chen, “Analysis and architecture design of an
HDTV720p 30 frames/s H.264/AVC encoder,” IEEE Trans. Circuits
Syst. Video Technol., vol. 16, no. 6, pp. 673–688, Jun. 2006.

[4] “Fast integer pel and fractional pel motion estimation for AVC,” in Joint
Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG, JVT-F016,
December 2002.

[5] Choudhury A. Rahman and Wael Badawy, “UMHexagonS Algorithm
Based Motion Estimation Architecture For H.264/AVC,” Proceedings of
the 9th International Database Engineering & Application Symposium
(IDEAS), 2005

[6] Myung-Suk Byeon, Yil-Mi Shin, and Yong-Beom Cho, “Hardware
Architecture for Fast Motion Estimation in H.264/AVC Video Coding,”
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., vol. E89-A,
no. 6,pp. 1744-1745,June 2006

[7] Obianuju Ndili and Tokunbo Ogunfunmi, “FPSoC-Based Architecture
for a Fast Motion Estimation Algorithm in H.264/AVC,” EURASIP
Journal on Embedded Systems, vol. 2009, Article ID 893897, 16 pages,
2009.

[8] X. Yi, J. Zhang, N. Ling, and W. Shang, “Improved and simplified
fastmotion estimation for JM,” in Proceedings of the 16th Meeting of the
Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG, Posnan,
Poland, July 2005, JVT-P021.doc.

Figure 9: Adder Tree Diagram

