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Abstract – In the 21st century, video communication plays an 

important role in various multimedia communications, from 

internet streaming to HDTV broadcasting. A video usually 

consumes a great deal of storage space. Hence, video 

compression is needed. Motion estimation plays a vital role 

in video compression. This paper discusses the design and 

analysis of motion estimation using the unsymmetrical multi-

hexagon search (UMHexagonS) fast search algorithm. The 

architecture consists of pixel buffers, processing elements, 

adder tree, comparator unit and control unit. The result 

shows that the architecture is able to perform the complete 

motion estimation effectively with a minimum clock cycle of 

32612. 

 

I. INTRODUCTION 

 

Video coding is important to compress large video 

data efficiently. The H.264 video coding standard, (also 

known as MPEG-4 AVC), has been developed for a broad 

range of applications from low bit-rate internet streaming 

applications to HDTV broadcasting with nearly lossless 

coding [1]. Motion estimation plays a vital role in video 

compression to remove the temporal redundancy between 

successive frames of video sequences [2]. 

 

Motion estimation can be implemented in several 

methods. However, the block-matching algorithm is the 

most famous and has been adopted by various video 

coding standards due to its simplicity and effectiveness in 

finding the best motion vector. The block matching 

algorithm finds the best-matched macroblock in a 

reference frame within a certain search window. Among 

various algorithms for block matching, a full search 

algorithm gives effective and optimal performance [3]. 

This algorithm, evaluates all of the search locations, 

which results in an optimal solution. However, due to the 

evaluation of many search locations, it has a high 

computational load. This high computational complexity 

makes the algorithm unsuitable for use in real-time 

applications. 

 

In order to reduce the computational load, many fast 

search algorithms have been proposed and developed, 

such as 2D-logarithm search (2DLOGS) [4], three-step 

search (3SS) [5], new three-step search (N3SS) [6], four-

step search (4SS) [7], block-based gradient descent search 

(BBGDS) [8], and diamond search (DS) [9, 10]. These 

fast search algorithms reduce the search points, hence 

reducing the computational complexity. 

 

The latest H.264 reference software implements an 

unsymmetrical cross-shaped multi-level hexagonal grid 

search (UMHexagonS) algorithm as the fast search to 

determine the motion vector in its encoder [11]. This 

algorithm performs several search modes that improve the 

effectiveness and robustness in its motion prediction. The 

algorithm accelerates the search speed and without loss of 

accuracy. 

 

This paper discusses the design and implementation of 

the fast search algorithm for motion estimation using an 

Unsymmetrical Multi-Hexagon Search (UMHexagonS). 

This paper is organised as follows. Section II reviews the 

existing technique of motion estimation. Section III is a 

discussion of the methodology utilized in this work. 

Section IV discusses the results obtained from the 

experiments. Finally, Section V concludes the paper. 

 

II. UMHexagonS Algorithm 

 

UMHexagonS has excellent performance as well as 

accuracy. This algorithm uses a multiple search pattern 

and utilises the Sum of Absolute (SAD) as the matching 

criteria. Aside from this, to reduce search time, if a 

minimal SAD is found early on, it can terminate the 

search. It provides good accuracy comparable to the full 

search algorithm but with better performance against time. 

This makes the algorithm suitable to be used for motion 

estimation. If an early termination is not implemented, 

there will be 124 candidate blocks for comparison in a 

search window. The UMHexagonS search flow diagram 

is shown in Figure 1. These comparisons are done in four 

step, consisting of unsymmetrical cross search, uneven 

multi-hexagon-grid search, extended hexagon-based 

search, and small diamond search, as shown in Figure 2 

[12]. 

 

First, the unsymmetrical cross search is performed. 

Before implementing this search pattern, a centre point 

must be initialized. In this work, the top left corner of the 

candidate block for a current macroblock will be used as 

the initial location for the search centre. With the centre 

point initialized, the search is performed on the search 

area defined in the reference frame. A minimum SAD 

value is used to determine the best match for each search 

point.  

 

Next, the uneven multi-hexagon-grid search will be 

performed. As with the unsymmetrical cross search, the 

location of the centre point search method in the search 

area is located at the top left corner of the candidate block. 

The SAD values are calculated and compared for each 

search point in order to find the minimum SAD values for 
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this search pattern. This minimum SAD value will then be 

compared with the minimum SAD value of the 

unsymmetrical cross search. The smallest among these 

values will be used as the search centre for the next step. 

 

The extended hexagon-based search is performed in 

the third step. If there is a minimum SAD value among 

the 6 search points, the search location is this minimum 

SAD value will be used as the new search centre point. 

Then the hexagon-based search will be repeated until the 

minimum SAD value remains at the centre of the previous 

search centre. The last step in this algorithm is the small 

diamond search. Each search checks four search points. 

As in the extended hexagon search, this search is iterate 

until the best search is located at the same point as the 

previous search centre. 
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Figure 1: Detailed flow chart for UMHexagonS algorithm. 

 
Figure 2: The search methods used in the UMHexagonS algorithm are: 
(a) unsymmetrical cross search, (b) uneven multi-hexagon-grid search, 

(c) extended hexagon-based search and (d) small diamond search. 

 

III. METHODOLOGY 

 

This section discusses the methodology taken to 

design the UMHexagonS architecture. The current 

macroblock consists of 16x16 pixels located in the current 

frame as shown in Figure 3. The current macroblock is 

processed in row-by-row fashion as shown in Figure 3 

until the entire macroblock in the current frame has been 

predicted. A search area is a region that consists of 48x48 

pixels (search range, p=16) of data that cover the possible 

range where the current macroblock is moved and is 

defined in a previous frame. Motion estimation is 

performed by comparing the minimum SAD value for one 

macroblock in the current frame with the search area 

defined in the reference frame. After all of the search 

locations have been evaluated for every current 

macroblock, the best matched candidate (i.e., the 

candidate that has the minimum SAD value) location is 

stored in the memory. These locations are then used to 

extract the 16x16 pixels and reconstructed as a predicted 

frame. 

 

For each current macroblock, a search pattern, as 

shown in Figure 4, is implemented to find the smallest 

SAD value. Figure 5 shows the overall architecture to 

implement the UMHexagonS algorithm. This architecture 

consists of search area memory, current macroblock 

memory, a processing element, an adder tree, a 

comparator and a control unit. First, pixels for the 

candidate macroblock are stored in the current 

macroblock memory, whereas the search area pixels are 

stored in the search area memory. This current 

macroblock memory stores 16x16 pixels of data, whereas 

48x48 search area pixels are stored in the search area 

memory. The output for the search area memory and 

current macroblock memory are connected to the 

processing element.  

 

The processing element is one of the major parts for 

the architecture. It calculates the absolute difference value 

between the current pixel and the reference pixel. This 

design uses 256 processing elements (PE) to perform the 

computation. Figure 6 shows one of these PEs. Pixels that 

are stored in the current macroblock and search area 

memories are input into the current pixel register (CPR) 

and reference pixel register (RPR). These data are then 

used to perform the absolute difference between the 

current macroblock and search area pixels. This process is 

repeated until all current macroblock and reference 

macroblock pixels are evaluated. The results of the 256 

absolute differences are input to the adder tree. 

 

The adder tree, as shown in Figure 7, performs 

summation of the 256 absolute differences obtained from 

the processing elements. The sum of absolute different 

(SAD) values will be used in the next stage, which is a 

comparator module as shown in Figure 8. The comparator 

unit determines the minimum SAD value for each of the 

corresponding motion vectors. Register 1 in the 

comparator is first initialised to a maximum SAD value. 

The SAD value from adder tree will be compared to the 

value in Register 1. The smaller value will be stored in 

(a) (b) 

(c) (d) 



Register 1. At the same time, the minimum SAD value 

will be output through the value stored in Register 2. 

 

The control unit will determine the operation of all 

modules in Figure 5 according to the UMHexagonS 

algorithm. Once the minimum SAD is found for each 

best-matched macroblock in the search area, the SAD 

value will be stored in memory together with the best-

matched location. The location of the search point is 

determined from the address decoder obtained in the 

control unit. 

 

 

 
Figure 3 An example of video frame devided into 60 macroblocks; 

motion estimation is performed row-by-row. 

 

 

 
 

Figure 4 UMHexagonS algorithm search point in the search area. 

 

 

 
Figure 5 The proposed UMHexagonS architecture. 

 

 
Figure 6 One of the processing element block diagram. 

 

 
Figure 7 Adder tree architecture for the UMHexagonS. 

 
Figure 8 Comparator block diagram. 

 

 

IV. RESULTS AND DISCUSSION 

 

In this work, the hardware has been modelled using 

Verilog hardware description language (HDL) and 

simulated using Model-Sim software. Foreman video 

sequence (QCIF format) is used as a test bench during 

hardware simulation. Pixel data of these frames is stored 

in the current memory block and reference memory block 

respectively. A video frame is divided into several 

macroblocks. A macroblock represents 16x16 pixels of 

data (i.e., 256 pixels). Hence, there are 99 macroblocks 

for a resolution of 176x144.  

 

Table 1 tabulates the total clock cycles used in a 

search point. In this architecture, one search point 

consumes 263 clock cycles to find a SAD value. This total 



clock cycles are constructed by 1 clock cycle from the 

memory block, 257 clock cycles from a 256-bit buffer, 1 

clock cycle from a processing element, 2 clock cycles 

from the adder tree and 2 clock cycles from the 

comparator.  

 

The search pattern is composed of 4 searches. An 

unsymmetrical cross search contains 25 search points. 

Therefore, 25x263 = 6575 clock cycles are needed. An 

uneven multi-hexagon-grid search contains 89 search 

points. Therefore, 89x263 = 23407 clock cycles are 

needed. As extended hexagon-based search contains 6 

search points. If there is no iterate loop, it requires 6x263 

= 1578 clock cycles. Otherwise, if it needs x times the 

iterate loop, then xx6x263 = 1578x clock cycles are 

needed. A small diamond search contains 4 search points. 

If there is no iterate loop, it requires 4x263 = 1052 clock 

cycles. Otherwise, if it need x times the iterate loop, then 

xx4x263 = 1052x clock cycles are needed. 

 

Figure 9 shows the current frame, reference frame and 

predicted frame results from performing motion 

estimation using the designed UMHexagonS. The output 

from the motion estimation is used to reconstruct the 

predicted frame. Currently, the hardware supports a 16x16 

macroblock. In the future, this work will enhance the 

capability of the motion estimation architecture to include 

variable block size as recommended by the H.264/MPEG-

4 AVC standard. 
 
Table 1: Total clock cycles used in the UMHexagonS (a) clock cycle 

needed to load the data into each sub module (b) clock cycle needed 
during performing each search pattern. 

 
Processing Modules Clock Cycle 

Memory Block 1 

256 bits Buffer 257 

Processing Element 1 
Adder Tree 2 

Comparator 2 

Total Clock Cycles 263 

(a) 

 
Search Pattern Clock Cycle 

Unsymmetrical Cross Search 6575 

Uneven Multi-hexagon-grid Search 23407 

Extended Hexagon Based Search 1578 

Small Diamond Search 1052 

Minimum Total Clock Cycles 32612 

(b) 

 
 

 

Figure 9: (a) Current frame, (b) Reference frame and (c) Predicted 

frame from best-matched macroblock. 

 

 

 

 

 

V. CONCLUSION 

 

Motion estimation is an important part in a video 

compression process. There are many algorithms that can 

be used to apply motion estimation, such as fast search 

algorithm and full search algorithm. A fast search 

algorithm is preferable than a full search in term of 

computational time. In this project, UMHexagonS fast 

search algorithm is chose. This algorithm is divided into 4 

steps in sequence, which is unsymmetrical cross search, 

uneven multi-hexagon-grid search, extended hexagon 

based and small diamond search. After completing this 

search pattern, motion vector is determined and this 

information will be used in the video compression process. 

The result shows that the motion estimation architecture 

can perform 16x16 block search effectively with a 

minimum of 32612 clock cycles. The next part of the 

work will enhance the capability of the architecture to 

include variable block size motion estimation as 

recommended by the H.264/MPEG-4 AVC standard. 
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