
Design and Analysis of Fast Search Motion

Estimation Architecture for Video Compression
Asral Bahari Jambek1, Yoong Yee Lai2, and Arief Affendi Juri3

School of Microelectronic, University Malaysia Perlis
1asral@unimap.edu.my, 2lyyee_1019@yahoo.com, 3arief.affendi@gmail.com

Abstract – In the 21st century, video communication plays an

important role in various multimedia communications, from

internet streaming to HDTV broadcasting. A video usually

consumes a great deal of storage space. Hence, video

compression is needed. Motion estimation plays a vital role

in video compression. This paper discusses the design and

analysis of motion estimation using the unsymmetrical multi-

hexagon search (UMHexagonS) fast search algorithm. The

architecture consists of pixel buffers, processing elements,

adder tree, comparator unit and control unit. The result

shows that the architecture is able to perform the complete

motion estimation effectively with a minimum clock cycle of

32612.

I. INTRODUCTION

Video coding is important to compress large video

data efficiently. The H.264 video coding standard, (also

known as MPEG-4 AVC), has been developed for a broad

range of applications from low bit-rate internet streaming

applications to HDTV broadcasting with nearly lossless

coding [1]. Motion estimation plays a vital role in video

compression to remove the temporal redundancy between

successive frames of video sequences [2].

Motion estimation can be implemented in several

methods. However, the block-matching algorithm is the

most famous and has been adopted by various video

coding standards due to its simplicity and effectiveness in

finding the best motion vector. The block matching

algorithm finds the best-matched macroblock in a

reference frame within a certain search window. Among

various algorithms for block matching, a full search

algorithm gives effective and optimal performance [3].

This algorithm, evaluates all of the search locations,

which results in an optimal solution. However, due to the

evaluation of many search locations, it has a high

computational load. This high computational complexity

makes the algorithm unsuitable for use in real-time

applications.

In order to reduce the computational load, many fast

search algorithms have been proposed and developed,

such as 2D-logarithm search (2DLOGS) [4], three-step

search (3SS) [5], new three-step search (N3SS) [6], four-

step search (4SS) [7], block-based gradient descent search

(BBGDS) [8], and diamond search (DS) [9, 10]. These

fast search algorithms reduce the search points, hence

reducing the computational complexity.

The latest H.264 reference software implements an

unsymmetrical cross-shaped multi-level hexagonal grid

search (UMHexagonS) algorithm as the fast search to

determine the motion vector in its encoder [11]. This

algorithm performs several search modes that improve the

effectiveness and robustness in its motion prediction. The

algorithm accelerates the search speed and without loss of

accuracy.

This paper discusses the design and implementation of

the fast search algorithm for motion estimation using an

Unsymmetrical Multi-Hexagon Search (UMHexagonS).

This paper is organised as follows. Section II reviews the

existing technique of motion estimation. Section III is a

discussion of the methodology utilized in this work.

Section IV discusses the results obtained from the

experiments. Finally, Section V concludes the paper.

II. UMHexagonS Algorithm

UMHexagonS has excellent performance as well as

accuracy. This algorithm uses a multiple search pattern

and utilises the Sum of Absolute (SAD) as the matching

criteria. Aside from this, to reduce search time, if a

minimal SAD is found early on, it can terminate the

search. It provides good accuracy comparable to the full

search algorithm but with better performance against time.

This makes the algorithm suitable to be used for motion

estimation. If an early termination is not implemented,

there will be 124 candidate blocks for comparison in a

search window. The UMHexagonS search flow diagram

is shown in Figure 1. These comparisons are done in four

step, consisting of unsymmetrical cross search, uneven

multi-hexagon-grid search, extended hexagon-based

search, and small diamond search, as shown in Figure 2

[12].

First, the unsymmetrical cross search is performed.

Before implementing this search pattern, a centre point

must be initialized. In this work, the top left corner of the

candidate block for a current macroblock will be used as

the initial location for the search centre. With the centre

point initialized, the search is performed on the search

area defined in the reference frame. A minimum SAD

value is used to determine the best match for each search

point.

Next, the uneven multi-hexagon-grid search will be

performed. As with the unsymmetrical cross search, the

location of the centre point search method in the search

area is located at the top left corner of the candidate block.

The SAD values are calculated and compared for each

search point in order to find the minimum SAD values for

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future

media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or

redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. Digital Object Identifier:

10.1109/ICIAS.2012.6306215

2012 4th International Conference on Intelligent and Advanced Systems (ICIAS)

http://dx.doi.org/10.1109/ICIAS.2012.6306215

this search pattern. This minimum SAD value will then be

compared with the minimum SAD value of the

unsymmetrical cross search. The smallest among these

values will be used as the search centre for the next step.

The extended hexagon-based search is performed in

the third step. If there is a minimum SAD value among

the 6 search points, the search location is this minimum

SAD value will be used as the new search centre point.

Then the hexagon-based search will be repeated until the

minimum SAD value remains at the centre of the previous

search centre. The last step in this algorithm is the small

diamond search. Each search checks four search points.

As in the extended hexagon search, this search is iterate

until the best search is located at the same point as the

previous search centre.
Start:Check

Initial Search Point

Unsymmetrical Cross Search

New Minimum

SAD Value?

Uneven Multihexagon Grid Search

Extended Hexagon Based Search

Small Diamond Search

Stop

Search Point with Minimum SAD Value

as New Center Search Point

Search Point with Minimum SAD Value

as New Center Search Point

YES

NO

YES

NO

New Minimum

SAD Value?

Figure 1: Detailed flow chart for UMHexagonS algorithm.

Figure 2: The search methods used in the UMHexagonS algorithm are:
(a) unsymmetrical cross search, (b) uneven multi-hexagon-grid search,

(c) extended hexagon-based search and (d) small diamond search.

III. METHODOLOGY

This section discusses the methodology taken to

design the UMHexagonS architecture. The current

macroblock consists of 16x16 pixels located in the current

frame as shown in Figure 3. The current macroblock is

processed in row-by-row fashion as shown in Figure 3

until the entire macroblock in the current frame has been

predicted. A search area is a region that consists of 48x48

pixels (search range, p=16) of data that cover the possible

range where the current macroblock is moved and is

defined in a previous frame. Motion estimation is

performed by comparing the minimum SAD value for one

macroblock in the current frame with the search area

defined in the reference frame. After all of the search

locations have been evaluated for every current

macroblock, the best matched candidate (i.e., the

candidate that has the minimum SAD value) location is

stored in the memory. These locations are then used to

extract the 16x16 pixels and reconstructed as a predicted

frame.

For each current macroblock, a search pattern, as

shown in Figure 4, is implemented to find the smallest

SAD value. Figure 5 shows the overall architecture to

implement the UMHexagonS algorithm. This architecture

consists of search area memory, current macroblock

memory, a processing element, an adder tree, a

comparator and a control unit. First, pixels for the

candidate macroblock are stored in the current

macroblock memory, whereas the search area pixels are

stored in the search area memory. This current

macroblock memory stores 16x16 pixels of data, whereas

48x48 search area pixels are stored in the search area

memory. The output for the search area memory and

current macroblock memory are connected to the

processing element.

The processing element is one of the major parts for

the architecture. It calculates the absolute difference value

between the current pixel and the reference pixel. This

design uses 256 processing elements (PE) to perform the

computation. Figure 6 shows one of these PEs. Pixels that

are stored in the current macroblock and search area

memories are input into the current pixel register (CPR)

and reference pixel register (RPR). These data are then

used to perform the absolute difference between the

current macroblock and search area pixels. This process is

repeated until all current macroblock and reference

macroblock pixels are evaluated. The results of the 256

absolute differences are input to the adder tree.

The adder tree, as shown in Figure 7, performs

summation of the 256 absolute differences obtained from

the processing elements. The sum of absolute different

(SAD) values will be used in the next stage, which is a

comparator module as shown in Figure 8. The comparator

unit determines the minimum SAD value for each of the

corresponding motion vectors. Register 1 in the

comparator is first initialised to a maximum SAD value.

The SAD value from adder tree will be compared to the

value in Register 1. The smaller value will be stored in

(a) (b)

(c) (d)

Register 1. At the same time, the minimum SAD value

will be output through the value stored in Register 2.

The control unit will determine the operation of all

modules in Figure 5 according to the UMHexagonS

algorithm. Once the minimum SAD is found for each

best-matched macroblock in the search area, the SAD

value will be stored in memory together with the best-

matched location. The location of the search point is

determined from the address decoder obtained in the

control unit.

Figure 3 An example of video frame devided into 60 macroblocks;

motion estimation is performed row-by-row.

Figure 4 UMHexagonS algorithm search point in the search area.

Figure 5 The proposed UMHexagonS architecture.

Figure 6 One of the processing element block diagram.

Figure 7 Adder tree architecture for the UMHexagonS.

Figure 8 Comparator block diagram.

IV. RESULTS AND DISCUSSION

In this work, the hardware has been modelled using

Verilog hardware description language (HDL) and

simulated using Model-Sim software. Foreman video

sequence (QCIF format) is used as a test bench during

hardware simulation. Pixel data of these frames is stored

in the current memory block and reference memory block

respectively. A video frame is divided into several

macroblocks. A macroblock represents 16x16 pixels of

data (i.e., 256 pixels). Hence, there are 99 macroblocks

for a resolution of 176x144.

Table 1 tabulates the total clock cycles used in a

search point. In this architecture, one search point

consumes 263 clock cycles to find a SAD value. This total

clock cycles are constructed by 1 clock cycle from the

memory block, 257 clock cycles from a 256-bit buffer, 1

clock cycle from a processing element, 2 clock cycles

from the adder tree and 2 clock cycles from the

comparator.

The search pattern is composed of 4 searches. An

unsymmetrical cross search contains 25 search points.

Therefore, 25x263 = 6575 clock cycles are needed. An

uneven multi-hexagon-grid search contains 89 search

points. Therefore, 89x263 = 23407 clock cycles are

needed. As extended hexagon-based search contains 6

search points. If there is no iterate loop, it requires 6x263

= 1578 clock cycles. Otherwise, if it needs x times the

iterate loop, then xx6x263 = 1578x clock cycles are

needed. A small diamond search contains 4 search points.

If there is no iterate loop, it requires 4x263 = 1052 clock

cycles. Otherwise, if it need x times the iterate loop, then

xx4x263 = 1052x clock cycles are needed.

Figure 9 shows the current frame, reference frame and

predicted frame results from performing motion

estimation using the designed UMHexagonS. The output

from the motion estimation is used to reconstruct the

predicted frame. Currently, the hardware supports a 16x16

macroblock. In the future, this work will enhance the

capability of the motion estimation architecture to include

variable block size as recommended by the H.264/MPEG-

4 AVC standard.

Table 1: Total clock cycles used in the UMHexagonS (a) clock cycle

needed to load the data into each sub module (b) clock cycle needed
during performing each search pattern.

Processing Modules Clock Cycle

Memory Block 1

256 bits Buffer 257

Processing Element 1
Adder Tree 2

Comparator 2

Total Clock Cycles 263

(a)

Search Pattern Clock Cycle

Unsymmetrical Cross Search 6575

Uneven Multi-hexagon-grid Search 23407

Extended Hexagon Based Search 1578

Small Diamond Search 1052

Minimum Total Clock Cycles 32612

(b)

Figure 9: (a) Current frame, (b) Reference frame and (c) Predicted

frame from best-matched macroblock.

V. CONCLUSION

Motion estimation is an important part in a video

compression process. There are many algorithms that can

be used to apply motion estimation, such as fast search

algorithm and full search algorithm. A fast search

algorithm is preferable than a full search in term of

computational time. In this project, UMHexagonS fast

search algorithm is chose. This algorithm is divided into 4

steps in sequence, which is unsymmetrical cross search,

uneven multi-hexagon-grid search, extended hexagon

based and small diamond search. After completing this

search pattern, motion vector is determined and this

information will be used in the video compression process.

The result shows that the motion estimation architecture

can perform 16x16 block search effectively with a

minimum of 32612 clock cycles. The next part of the

work will enhance the capability of the architecture to

include variable block size motion estimation as

recommended by the H.264/MPEG-4 AVC standard.

VI. REFERENCES
[1] T. Wiegand, G. J. Sullivan, G. Bjntegaard, and A.

Luthra,“Overview of the H.264/AVC video coding

standard,”IEEE Transactions on Circuits and Systems for Video
Technology, vol. 13, no. 7, pp. 560-576, July 2003.

[2] Yair Moshe and Hagit Hel-Or,"Video block motion estimation

based on Gray-code kernels," IEEE Trans. on Image Processing,
vol.18, pp.2243-2254, oct.2009

[3] Tih-Chuan Lin and Shen-Chuan Tai, "Fast Full-Search Block-

Matching Algorithm for Motion-Compensated Video
Compression," IEEE Trans. Commun., vol.45, pp.527-531, may

1997

[4] J. R. Jain and A. K. Jain, “Displacement measurement and its
application in interframe image coding,” IEEE Trans. Commun.,

vol. COM-29, pp. 1799–1806, Dec. 1981.

[5] T. Koga, K. Iinuma, A. Hirano, Y. Iijima, and T. Ishiguro,
“Motion compensated interframe coding for video conferencing,”

in Proc. Nat. Telecommun. Conf., New Orleans, LA, Nov. 29–

Dec. 3 1981, pp. G5.3.1–G5.3.5.
[6] R. Li, B. Zeng, and M. L. Liou, “A new three-step search

algorithm for block motion estimation,” IEEE Trans. Circuits Syst.
Video Technol.,vol. 4, pp. 438–442, Aug. 1994.

[7] L. M. Po and W. C. Ma, “A novel four-step search algorithm for

fast block motion estimation,” IEEE Trans. Circuits Syst. Video
Technol.,vol. 6, pp. 313–317, June 1996.

[8] L. K. Liu and E. Feig, “A block-based gradient descent search

algorithm for block motion estimation in video coding,” IEEE

Trans. Circuits Syst.Video Technol., vol. 6, pp. 419–423, Aug.

1996.

[9] J. Y. Tham, S. Ranganath, M. Ranganath, and A. A. Kassim, “A
novel unrestricted center biased diamond search algorithm for

block motion estimation,” IEEE Trans. Circuits. Syst. Video

Technol., vol. 8, pp.369–377, Aug. 1998. 85
[10] S. Zhu and K. K. Ma, “A new diamond search algorithm for fast

blockmatching motion estimation,” IEEE Trans. Image

Processing, vol. 9, pp.287–290, Feb. 2000.
[11] “Fast integer pel and fractional pel motion estimation for AVC,”

in Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG,

JVT-F016, December 2002.
[12] C. Rahman and W. Badawy, “UMHexagonS Algorithm Based

Motion Estimation Architecture for H.264/AVC” In Proceedings,

Fifth International Workshop on System-on-Chip for Real-Time
Applications, 2005.

(a) (b) (c)

callto:+1243-2254

