
1

Interframe Bus Encoding Technique and
Architecture for MPEG-4 AVC/H.264 Video
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Abstract— In this paper, we propose an implementation of a
data encoder to reduce the switched capacitance on a system bus.
Our technique focuses on transferring raw video data for multiple
reference frames between off-chip and on-chip memories in an
MPEG-4 AVC/H.264 encoder. This technique is based on entropy
coding to minimize bus transition. Existing techniques exploit
the correlation between neighboring pixels. In our proposed
technique, we exploit pixel correlation between two consecutive
frames. Our method achieves a 58% power saving compared to
an unencoded bus when transferring pixels on a 32-bit off-chip
bus with 15pF capacitance per wire.

I. I NTRODUCTION

Video application has become increasingly popular in to-
day’s wireless communications. However, video processing
is computing intensive and dissipates a significant amount
of power. For MPEG-4 video compression, raw video data
(pixel) dominates data transfer [1]. During the compression of
five minutes of video (CIF@15 fps), at least 4500 frames are
transferred from the memory to the video compressor. These
values increase for higher frame rates and frame resolutions.

This high data transfer translates into high power dissipation
on the memory-processor busses. This is severe for systems
with off-chip memory where the bus load is several orders of
magnitude higher than the on-chip bus with a typical value of
around 15pF on each bus wire [2]. It has been reported that
the off-chip bus consumes 10%-80% of overall power [3].

In this paper, we present a data encoding technique to
minimize power dissipation during multiple-frame transfer
between the MPEG-4 AVC/H.264 video compressor and the
external reference frame memory using an off-chip system
bus as shown in Fig. 1. Power reduction is achieved by
utilizing bus encoding to reduce switching activity on the
bus. Bus encoding transforms the original data such that two
consecutive encoded data has lower switching activity thanthe
unencoded one.

[4], [5] and [6] address implemention of the bus encoding
on address busses. The proposed methods exploit highly corre-
lated bus addresses to reduce switching activity. Comparedto
address busses, data busses show more random characteristics.
Bus invert [7], codebook [8] and exact algorithm [9] were
proposed for this type of data.
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Fig. 1. Typical video communication system.

Existing techniques exploit the correlation between neigh-
bouring pixels for video data. However, pixel correlation
between frames has not been fully exploited to reduce bus
transition in the literatures. In [10], we have proposed an
interframe bus encoding technique where we utilised the
pixel correlation between two consecutive frames without full
system consideration. In this paper, we extend the technique
to a complete H.264 system.

The rest of the paper is organised as follows. Section II
reviews the existing intraframe techniques for bus encoding.
Section III discusses our approach to reducing the transition
activity during memory data transfer. Section IV discusses
the proposed implementation of the interframe bus encoding
technique for the H.264 system. This is followed by the results
and performance benchmarking of our method in Section V.
Finally, Section VI concludes the paper.

II. I NTRAFRAME DECORRELATION

The technique discussed in this paper is based on the com-
bination of difference-base-mapped and value-base-mapped
(dbm-vbm), as discussed in [11]. We adopt this method
because it allows us to exploit the pixel correlations widely
available in video data.

Fig. 2(a) shows the distribution of two adjacent pixels’
difference. Four different QCIF video sequences (Akiyo, Fore-
man, Table Tennis and Grasses), which represent various
motion types from low to high, are evaluated. Five frames from
each sequence are evaluated, which consists of 190080 pixels.
The graph shows that, for highly correlated data, the differ-
ence between two consecutive pixels with smaller magnitude
has higher probability than the larger magnitude. Dbm-vbm
utilises this characteristic to minimize the bus transition.

Fig. 3 shows the block diagram describing the dbm-vbm
operation. It consists of decorrelator (dbm) and entropy coder
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Fig. 2. Pixel decorrelation using (a) adjacent pixel (b) interframe vs.
intraframe decorrelation.
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Fig. 3. Dbm-vbm bus encoder and decoder.

(vbm). The dbm-vbm technique is summarized as follows.
First, two adjacent pixels (intraframe) are decorrelated using
dbm. Dbm calculates the relative difference between the two
pixels. Vbm maps the values to patterns that have different
weights (i.e., total number of 1s). To reduce the overall
transition, it maps the low magnitude value to a pattern thathas
the fewest 1s, whereas higher magnitude values are mapped to
patterns that have more 1s. At the output, the XOR translates
1s as transition and 0s as transition-less.

The average number of transitions for the dbm-vbm method
depends on its source-word, i.e., the decorrelator output.The
more the graph is skewed toward zero, the more patterns are
assigned with less 1s. Thus, one way to improve the transition
reduction is by improving the decorrelator.

III. I NTERFRAME DECORRELATION

Video sequences consist of both spatial and temporal re-
dundancy. The existing bus encoding techniques utilize spatial
redundancy within frames. However, the temporal redundancy
is not fully exploited to reduce bus transition.

In [10], we have proposed decorrelating the pixels using two
consecutive frames (interframe). This method is based on the
observation that two consecutive frames are highly correlated.
Often, the background of a scene is stationary. Furthermore,
for a moving object, the differences between successive frames
are very small. Fig. 2(b) compares the pixel decorrelation
using the intraframe and interframe methods for five foreman
sequences. The figure shows that decorrelating the pixels using
interframe improves the graph skew-ness towards zero. This
will translate to higher transition saving since more patterns
will be assigned with less 1s.

The results in [10] show that the interframe method provides
higher transition reduction compared to both bus invert and
intraframe implementations. On average, our method reduces
up to 65% of the transition over an unencoded bus. This is
equivalent to a 1.5 and 2.6 times more transition saving over
intraframe and clustered bus invert, respectively.
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Fig. 4. Simultaneous bit switching comparison between different bus
encoding methods: unencoded bus, bus invert and the proposed interframe
method.

Fig. 4 shows the normalised distribution for the total number
of bits that are switched simultaneously when transferring
the pixels. The higher the number of bits that are switched
simultaneously, the higher the peak power of the bus. As
shown in the figure, interframe bus encoding results in a much
lower number of bits switching simultaneously compared to
the bus invert method. This shows that not only does it reduce
the off-chip average power, but the interframe method also
reduces the peak power of the bus.

IV. I NTERFRAME BUS ENCODING IMPLEMENTATION INTO

H.264 SYSTEM

As shown in Fig 1, the external memory is connected with
the on chip video compressor through an off-chip bus. In
typical implementation, the same bus is used to send or receive
the data from the external memory. In [10], we assumed that
the pixel from the two frames is transmitted in two different
busses. In order to realise the interframe bus encoding into
hardware implementation, modification has to be made to this
setup. This is to take into account the limited availabilityof
the off-chip bus used in the actual system.

In this section, the operation of the H.264 video com-
pression system is first described to illustrate the interaction
between the video compressor and the off-chip memory. Then,
the proposed architecture for implementing the interframe
bus encoding for the H.264 system is discussed in depth to
minimise the off-chip bus power.

A. H.264 system

Fig. 5 (a) illustrates the main functional block of the H.264
encoder and the interaction among its main modules. The
encoder consists of motion estimation (ME), motion compen-
sation (MC), integer transform (IT), quantizer (Q), variable
length coder (VLC), and deblocking filter (DFIR). In addition,
the system requires search area buffers (SA) to store search
area pixels temporarily from the reference frames memory,
and filtered macroblock buffers to keep the intermediate data
during the encoding process. The main function of the encoder
is to encode the current macroblock pixels into a compact
bitstream so that it can be decoded by the decoder.

In H.264, the encoder first loads the search area and the
current macroblock (MB) pixels from the external frame
memory through the off-chip bus. Then, the current MB is
predicted using motion estimation. This process is repeated
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Fig. 5. (a) Interaction between the external reference frame memory and
H.264 modules. (b) Modified H.264 system that includes an interframe bus
coder.

until all search areas from multiple reference frames are
evaluated. The predicted MB that results in the lowest cost is
selected. The residue of the predicted MB is then calculated
by subtracting the current MB and the predicted MB, before
it is transformed by the integer transform. The transform
coefficient and motion vector is coded using the variable
length coder to generate a compact bitstream. The encoder also
reconstructs the current MB using information from transform
coefficients. The reconstructed MB is filtered by the deblockng
filter before storing the MB in the external reference frame
memory for future frame prediction.

The system requires 2000 clock cycles to process one
MB by dividing the encoder operation into three pipeline
stages: ME/MC, IT/Q/IQ/IT, and DFIR/VLC. For QCIF frame
size at 30 frames per second, the system is set to 6 MHz
to achieve real-time operation. Based on the UMC 0.13um

CMOS technology, the system requires a total core area of
4.8mm2.

B. Integration of Interframe Bus Encoding Into H.264

As shown in Fig. 5 (a), an interaction between the H.264
modules and the external reference frame buffer occurs on two
occasions: (a) when the pixel is stored into the external refer-
ence frame buffer after filtering the MB through the deblocking
filter; (b) during loading of the search area pixels from the
external reference frame buffer into the search area RAM.
Thus, the bus encoder and decoder should be implemented
in (a) and (b), respectively.

Fig. 5 (b) shows the modified H.264 system to include the
proposed interframe bus encoding method. Since reference
frames are accessed in serial between video processor and
the external frame memory, some modification is made on
the interframe bus encoding circuit proposed in [10]. To allow
interframe decorrelation during bus encoding, reference frames

0 1 2 3 4 5 6 7

Sequence of frame stored in frame buffer

Stored using intraframe 

bus encoding

Stored using interframe 

bus encoding

Fig. 6. Reference frame arrangement of external buffer and the type of bus
encoding applied to it.

stored in the external memory are arranged in a sequence as
shown in Fig. 6. Since the interframe technique requires other
frames, the bus coding is alternated between intraframe and
interframe.

Base frame (BF) refers to the frame that is stored as
intraframe by the bus encoder, since it does not require any
other frames. Dependence frame (DF) is a frame that is stored
as interframe by the bus encoder, since it requires other frames
to decode the pixel values. DF is always stored after its BF
for ease of decoding later on.

In order to allow interframe decorrelation, pixels from the
base frame have to exist for the bus encoder. The bus decoder
has a similar requirement. For the bus decoder, since the
search area is accessed from a multiple number of frames,
the proposed solution is to load the base frame first, followed
by the dependence frame. When the search area from the
dependence frame is loaded, the search area pixel from the
base frame is accessed as well to perform the interframe
decorrelation.

In contrast to the bus decoder, since the fully filtered MB is
only written into the external frame buffer, no base frame is
available at the bus encoder. The solution proposed for thisis
to store the required base frame MB in a buffer. The base frame
MB can be stored when loading the base frame search area into
the search area memory. Since the deblocking filter operation
is located in the third stage of the pipeline buffer, an additional
MB buffer is required to store the last three MBs of the base
frame. This buffer will be used during interframe decorrelation
when writing the pixels into the reference frame buffers. Using
this approach, it is possible to perform interframe decorrelation
at the bus encoder.

The detailed hardware implementations for the bus encoder
and decoder are shown in Fig. 7 and 8, respectively. For this
implementation, four pixels at a time are transferred to/from
the external memory on a 32 bits bus (8 bits per pixel). Thus,
four encoders and decoders are used to encode and decode the
bus. Due to space limitation, only one encoder and one decoder
are shown in Fig. 7 and 8. The architectures are able to perform
either interframe or intraframe bus encoding. When intraframe
is selected, the bus encoder calculates the dbm decorrelation
using the filtered pixel and the previous pixel stored in the
register (Reg). Similar input is used to calculate the dbm−1 at
the bus decoder.

During the interframe bus encoding, the encoder calculates
the dbm using filtered pixels and pixels stored in the buffer
MB as shown in Fig. 7. Since the buffer MB stores the cor-
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responding base frame MB, this is equivalent to decorrelating
a pixel from two frames. To decode the pixel, the search area
from the base frame is first loaded into the search area buffer.
When the search area from the dependence frame is loaded,
the loaded search area from the base frame is read in parallel
to correlate the search area pixel before storing it in the search
area RAM. This is shown by the dotted line with an arrow in
Fig. 8.

V. RESULTS AND DISCUSSION

The design was synthesised using the UMC 0.13um CMOS
library. Verilog-XL and Power Compiler were used to perform
functional simulation and power analysis using the extracted
layout data, respectively. Actual video data was used to verify
the hardware and to obtain the estimated power consumption.

Tables I and II illustrate the resources required to implement
the proposed interframe bus encoder and decoder in the H.264
system. For this implementation, four pixels at a time are
transferred to/from the external memory on a 32 bit bus. Thus,
four encoders and decoders are used to encode and decode the
bus. The tables show that the maximum delay and total area
overhead required to implement the hardware is 4.6 ns and
0.16mm2, respectively. This is equivalent to 3% of the total
area in the conventional H.264 as discussed in Section IV-A.

Tables I and II also show the power evaluation result of
the proposed architectures. From the table, it can be seen
that the proposed encoder and decoder circuits consume 0.568
and 0.470 mW of power during interframe bus coding mode,
respectively, with memory dominating the circuit power over-
head. Since the intraframe decorrelation does not require any
memory access, the total circuit power during intraframe bus
encoding and decoding mode is much lower at 0.176 and 0.060
mW, respectively.

TABLE I

THE BUS ENCODING AREA AND POWER OVERHEAD REQUIRED TO

IMPLEMENT THE INTERFRAME-INTRAFRAME BUS CODING ON A 32 BIT

BUS AT 6MHZ

Encoder Area
(mm

2)
Power (mW) Delay

(ns)Modules Interframe mode Intraframe mode

Logic 0.03 0.178 0.176

Memory 0.10 0.39 - 4.4

Total 0.13 0.568 0.176

TABLE II

THE BUS DECODING AREA AND POWER OVERHEAD REQUIRED TO

IMPLEMENT THE INTERFRAME-INTRAFRAME BUS CODING AT 6MHZ

Decoder Area
(mm

2)
Power (mW) Delay

(ns)Modules Interframe mode Intraframe mode

Logic 0.03 0.119 0.060

Memory - 0.352 - 4.6

Total 0.03 0.470 0.060

Fig. 9 and 10 show the total power consumption during
interframe bus encoding and decoding, respectively, as com-
pared to unencoded bus, bus coded using cluster bus invert and
intraframe. The total power consumption,PT , is calculated
as PT = PCircuit + PCL, where PCircuit represents the
power consumption due to bus encoder or decoder circuits.
PCL is the total bus power consumption estimated byPCL =
1

2
CLV 2

DD
fα, whereCL is capacitance load,VDD is operating

voltage,f is operating frequency andα is switching activity.
The slope of the graphs in Fig. 9 and 10 is proportional toα,
which is dependent on the type of bus encoding used.

For a typical off-chip wire capacitance of 15pF, the total
bus encoder power consumption during interframe mode is
3.39mW, while it is 4.8mW during intraframe mode. These are
equivalent to 58% and 40% power savings compared to un-
encoded bus, respectively. The greater power saving achieved
by interframe is due to much lower transitions occurring on
the busses. A smaller slope, as shown in the graphs in Fig. 9
and 10 reflects this.

Tables III and IV show the total energy consumed by the
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into the external reference frame memory
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Fig. 10. Power consumption of 32 bit bus at 6MHz when loading pixels
from the external reference frame memory

TABLE III

TOTAL ENERGY CONSUMPTION ON32BIT BUS AT 6MHZ WITH 15PF PER

BUS WIRE WHEN SENDING ONE FILTEREDMB TO EXTERNAL FRAME

BUFFER

Bus encoder Power (µW) Clock Energy (nJ) Saving (%)

Unencoded 8053.16 64 85.90 -
Bus Inv 7633.83 64 81.43 5

Intraframe 4846.83 64 51.70 40

Interframe 3386.60 64 36.13 58

32bit bus when accessing the external reference frame buffer.
Since loading of one search area transfers more data (512
pixels) than storing one MB data into the external reference
frame buffer (256 pixels), more energy is consumed during
loading of the search area pixel. In addition, the data loaded
from the external reference frame buffer is propotional to the
number of reference frames used during motion estimation.
From the tables, for both cases the interframe bus encoding
saves 58% of total energy as compared to an unencoded bus.

VI. SUMMARY

We have presented an interframe bus encoding technique
for applications where multiple frames are transferred between
off-chip memories, such as in MPEG-4 AVC/H.264 applica-
tions. The proposed interframe bus encoding technique results
in a 65% transition reduction over the unencoded bus. This is
equivalent to a 58% power saving compared to an unencoded
bus when transmitting four pixels at a time over a 32-bit bus
with 15pF capacitance per wire.

TABLE IV

TOTAL ENERGY CONSUMPTION ON32-BIT BUS AT 6MHZ WITH 15PF PER

BUS WIRE WHEN RECEIVING ONE SEARCH AREA FROM EXTERNAL FRAME

BUFFER FOR ONE REFERENCE FRAME.

Bus decoder Power (µW) Clock Energy (nJ) Saving (%)

Unencoded 8053.16 128 171.80 0

Bus Inv 7633.83 128 162.85 5

Intraframe 4730.83 128 100.92 40

Interframe 3288.60 128 70.16 58
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